
Deep Neural Networks in SAS ® Enterprise Miner
By Russ Lavery

ABSTRACT:

Recent advances in algorithms and hardware (the GPU chip) have made it possible to build neural nets that are both
deeper and wider than had been practical in the past. This paper explores the theory, and a bit of the practice,
associated with the building of deep neural networks in SAS Enterprise Miner.

INTRODUCTION:

Neural networks got
that name because
of their similarity to
the way neurons
work in the human
body. Any web
research session on
this subject returns
mentions of neurons,
so a small anatomy
lesson might be
worthwhile.

A cell is not a piece
of undifferentiated
jelly. Cells have
structure and parts of
cells have specific
functions.

The cell has a
nucleus that contains
the DNA and parts
that connect the cell
body to other cells.

Figure 1

Dendrites are long stringy parts of the cell to take inputs. Axons send outputs to other cells. Your body is an
incredibly deep neural network and one of your nerve cells can have hundreds of thousands of connections to other
cells.

An input to the cell, maybe the feeling of a touch or sensing of a color in your eyes, comes in through a dendrite.
Cells have many dendrites and can receive many simultaneous inputs. The individual inputs are summed, and
“summed” is used in the same way that a mathematician would use the word, in a specialized part of the cell located
adjacent to the start of the Axon. This specialized part of the cell, called the Axon Hilllock, sums the different inputs
and if the inputs exceeds some threshold the Axon Hillock sends an electrical signal down the Axon towards other
cells (the cell “fires”).

At the end of the Axon, the electrical signal is converted into a chemical signal that leaves the cell. A chemical signal
bridges the gaps (the synapses) to other cells.

The important things to recognize are: 1) the huge numbers of connections between nerve cells and 2) the function of
the Axon Hillock. It’s job is to sum the different inputs, some of which might increase the chance of sending out a
signal and some of which might decrease the chance of sending out a signal, and then to decide if it should send an
electrical discharge down the Axon.

Figure 2 shows a
small neural net but
the characteristics of
the small neural net
are present in larger
nets as well.

Nodes to the left are
sometimes called
“early” nodes.

A neural net can
predict either binary
or interval data and
this net is trying to
predict someone’s
weight from their sex,
age and height.

A network has three
types of nodes.

Figure 2

 Networks have input nodes and there are three nodes in this input layer. Networks have internal (often called hidden)
nodes and layers. This net has two hidden/internal layers. The first layer has three nodes and the second layer has
two nodes. Networks have an output layer and this network has one node in the output layer.

The network in figure 2 is a feedforward node. Each node in a layer to the left is connected to every node in the layer
immediately to its right. There are no connections backwards between nodes, so no arrows point to the left. Finally
there are no connections between nodes in the same layer.

Inside each node is a function (represented by the letter F in the circles). These functions are referred to as
activation functions, transfer functions or simply transforms. The functions are usually nonlinear and common ones
are linear, logistic, hyperbolic tangent and Gaussian. The fact that these transfer functions are usually non-linear
makes the whole neural network non-linear. A neural network has the ability to separate groups (and that is what
predicting a binary Y is doing) with a boundary that is very curved and irregular.

The basic process is to take the values of a person’s sex, age and height and enter them into the input nodes. The
input variables are often standardized to remove the effects of different measurement units. The values of sex, age
and height are multiplied by the weights (the red Ws) and the result is passed on to the internal nodes. Each internal
node receives many inputs. Some people think of neural network weights as being similar to the beta coefficients in
a regression. Neural net weights, like regression beta values, are measures of how much impact an X variable has
on the Y variable. Arrows indicate how values are combined. At the right side of the network, the sum of weighted
inputs (after going through all the nodes) is compared to a known Y value and an error is calculated. The back
propagation algorithm then takes the derivative of the error with respect to each of the weights and uses that
derivative to adjust the weights to produce a smaller error.

Think of each person’s sex, age and height entering this network - the three variables enter simultaneously - one
person at a time. The weights are, for the first person read, set to random numbers and they produces large errors.
After each observation is processed, the weights are adjusted to reduce the error and after many (often several
thousands) subjects are processed, the weights can predict the Y value with small error. A second pass is needed,
using the final weights, to score all the observations.

If a reader looks at the top node in the first internal layer s/he can see that it has inputs from sex, age and height as
well as from a one (coming from a yellow box). The one is called a bias term and it is used to adjust the summed
values from the input node so that the result, after adding in the weighed bias, has a value that does not “overload”
the transform function. Overloading is most easily explained by thinking of the activation function as being a

Gaussian transform – a bell shaped transform. The input to the activation function is the Z value (the summed
weighted inputs from previous nodes) for the Gaussian and the output of the transform is the height of the bell above
that value of Z. If Z is +3, the transform returns a value close to zero. If Z is +8, the transform also returns a value
close to zero. After a Z value exceeds a certain absolute value, the transform returns, for practical purposes, the
same value and is both “overloaded” and no longer sensitive to changes in Z. The bias is used to “move” the value of
Z back to a value where the transform function is more sensitive to changes in Z.

Inside the node, the inputs are summed and then pushed through the function in the middle of the node to produce
an output value for the node. I tend to think of each node as holding two numbers: an input number and an output
number. An input number is the weighted sum of all of the values coming in from the left and the weighted bias. An
output value is the one number that is a result of applying the transform function (also called activation function) to
the summed weighted input values (the input number).

In early research, the activation functions were often just step functions. If the summed weighted input values was not
above a certain level (a cutoff number), no value (or maybe a zero) was passed on to nodes to the right. Now the
nodes use smooth S shaped functions (or maybe bell-shaped) and they always pass on some value to nodes to the
right – though the value may be small.

Given enough nodes, and layers, you can model any data set to any desired level of accuracy – though it might take
a very long time if the data set is large.

If you feed, into the network, an X variable that has no predictive power (e.g. a code for “blue eyes” vs “not blue
eyes” in our problem of predicting weight) the neural net will eventually assign weights of zero to eye color. If you
have enough data, and enough time to wait for the algorithm to run, a neural net will remove non-predicting variables
by setting their weights to zero. However including a lot of silly variables as inputs will make the neural net run longer
and possibly increase the chance of it finding a local Optima.

Figure three shows
some of the
activation functions
that researchers use.

Linear is often used
to connect the last
hidden layer to the
output layer.

Hyperbolic tangent
and Gaussian
activations are also
commonly used in
other parts of the
network.

Figure 3

Figure 4 facilitates a
discussion of why
non-linear functions
are so commonly
used.

Biologists think that
frogs’ brains contain
two neural networks
to help it find flies to
eat.

One network
matches the size of
the object to the size
of an ideal fly. The
other network
matches the “flying
behavior” to that of
an ideal fly.

Figure 4

This paper will next discusses how a frog might use a Gaussian function to evaluate several potential meals. The
choices are: a small fly (red border and arrow), a large fly (blue border and arrow), a bird (green border and arrow)
and a moose (blue border and arrow). The activation functions are mound shaped and the X value (horizontal value)
generated by each object are “object distance from ideal”. Close to the ideal points, the function returns a large value
(it “fires”). There is a cut-off value, shown as a horizontal line on the function, at which point the frog decides if
“eat=True” or “eat=False” (or “activate” vs “not activate”, “fire” vs “not fire”).

For the small fly, both the size and flying behavior are close to the ideal (see red arrows). Both networks return a
large, “above the cut-off”, value and “lunch is served”. For the large fly, the size is a bit off-putting, though the flying
behavior is close to the ideal (see blue arrows). Both networks return large values and the frog would likely attack.
Because of the non-linear shape of the activation function, the networks are sensitive to small changes in the area of
the “ideal”.

For the bird, the size and behavior are both wrong (see green arrows) and the networks return two low values. For
the moose, both the size and behavior are very wrong (see black arrows) and the networks return two low values.
Because of the non-linear shape of the activation functions, the values returned for the bird and moose are similar.
This makes sense because once the frog had decided that an object is “not lunch” it does not need to make fine
evaluations of “how much not lunch” an object might be. Because of the shape of the non-linear activation function,
the networks are NOT-sensitive to small changes far from the “ideal”.

Figure 3 shows a
larger net, though far
from being a very
large net these days.
You can see there
are lots of
connections between
lots of nodes.

Neural nets are used
in digital cameras to
identify faces of
people in a picture.

Much exciting work is
being done in visual
recognition using
neural networks.

Figure 3

There was, and to some extent still is, a criticism of deep neural nets that they are black boxes – that the results can
be very good but no one can understand how the results are created. Recent research has made that statement less
true. Visual recognition research has allowed people to peek inside of neural nets and discover some exciting
findings. This paper will discuss the internal processes of neural networks using pictures as the research issue.

It seems that early layers in the net identify basic visual building blocks; like edges going from light-to-dark or dark-to-
light. Nodes farther to the right, in the net, can create higher level abstractions. Nodes in the middle of a neural net
might identify parts of faces, like ears or noses. Nodes to the far right of the neural net can reconstruct faces and
even recognize people.

WAYS TO USE SAS TO CREATE NEURAL NETWORKS:

SAS Enterprise Miner has four ways to do neural nets.

DMNeural uses bucketed principal components as X variables and can predict a binary or interval Y. HPNeural is
designed as a high performance modeling tool. It will access memory across multiple cores and multiple computer
nodes. It is not good for deep neural nets because it does not provide protection against the problem of vanishing or
exploding gradients. Auto Neural conducts limited searches to help you find a better network architecture. It will try
different numbers of layers and nodes as well as different activation functions.

Neural network is the SAS work horse for doing neural nets and will process a deep neural network. It provides the
most control and most power of the choices that SAS provides. In order to do a deep neural net you must have
Enterprise Miner installed, but it is easy to code a PROC Neural in the SAS display manager once you have installed
Enterprise Miner.

A NEURAL NET PROCESS:

Good Neural Network results are the result of a multi-step (multi-node?) process and this paper will examine some of
the other steps. Good neural network results come from a process and the work done before the neural net is
important. Steps in a good process might be:

Sampling can reduce the time to train a neural net and quick run times are always desirable. A researcher must
balance the desire for quick run times with the fact that training a complex neural network to do a complex task
requires lots of training data. To some extent, the quality of the results depends on the quality, and amount, of the
training data.

Programmers usually want to create partitioned data sets to allow SAS to automatically report on how well the neural
net performs on data that is different from the training data.

Consulting with business experts, and doing exploratory modeling, can reduce the number of variables that must be
feed into the neural net. Often having fewer, and higher quality, input variables reduces training time and improves
the results.

An analyst might want to impute missing values or transform data before passing it into a neural net. Neural nets are
highly non-– linear but transforms of the X variables can reduce training time.

A programmer might want to remove outliers because they can reduce model accuracy.

A neural net usually needs a data mining database (DMDB) catalog entry and a researcher might need to run PROC
DMDB be before her neural net will run.

Finally, in a neural net project, an analyst might also want to use other modeling nodes. It might be that the neural net
is not the best technique for any particular use case.

A “COCKTAIL PARTY” HISTORY OF NEURAL NETWORKS

The seminal article for neural nets was written by Donald Hebb in 1949. He wrote, about neurons in the body and
said, “when an Axon of cell A is near enough to excite cell B, and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.” Hebb was hypothesizing that “neurons that fire together wire together” and his article was the
start of an explanation of how neurons are involved in learning and memory.

Efforts to make computers work like human cells started soon after Hebb’s article. People were doing research using
computers and electrical circuits in the 1950s. In 1963 Vapnik and Chervonenkis discovered the idea of the support
vector machine.

A book, in 1963, threw a major monkey wrench into neural net research. Papert and Minsk, in their book titled
“Perceptrons”, demonstrated that a single node can classify successfully only if the Y classes in the data are linearly
separable. They also proved that a single layer perceptron could not learn the logical XOR function. The inability to
learn the XOR function was seen as a major, and general, flaw in neural networks and machine leaning. Research
interest plummeted.

Interest was revived when, in 1974, Paul Werbos invented a training method called backward propagation. This
allowed for the creation of multi-node and multi-layer neural nets, though it ran into a problem called “the vanishing
gradient” when applied to large nets.

Restricted Boltzmann machines were invented by Smolensky in 1986 but became important in the early 2000s as
Geoffry Hinton applied them to machine learning and the creation of Deep Neural Networks.

In 1981 Hubel and
Wiesel won a Nobel
Prize for work on
neuronal activities
and vision. They had
embedded an
electrode in a cat
brain and struggled
to measure some
sort of neuronal
activity driven by
pictures projected in
front of the cat.

Their first signal
came when the cat
saw a straight line as
they changed slides.

Figure 4

It turns out that lines, or edges, might be important for both animal vision and for computer vision. In figure 3 we can
see that early layers in the artificial neural net seem to be detecting lines of varying types.

Research into vision is particularly amenable to discovering what’s going on in the inner layers of the neural net. This
paper will discuss some image recognition tasks, and logic, as a way of building familiarity with the neural net internal
process.

In figure 5 we get
some idea of how
pictures are coded.

In this figure we see
how early number
recognition research
was coded.

Numbers were
written on an input
area that had been
divided into a 9 x 9
grid (one can obtain
better results if
coding is at a pixel
level but this is hard
to put on a ppt).

Each cell was coded
as to dark vs light.

Figure 5

The 81 cells were arranged in an 81 x 1 input vector and that input vector could be sent to a neural net with 81 input
nodes. A little thought, and a peek at the number “2” in the middle of the slide, will lead a reader to recognize that
numbers might need to be adjusted for position, and size, before being put into the neural net input vector. Above is a
basic process for number recognition. State-of-the-art vision technology, attempting to recognize people and objects
in photographs, will input each pixel level - coded for multiple colors - and the input vector will be much larger.

Early nodes in the
network assemble
the pixels into things
like: vertical edges,
horizontal edges (see
right), angles or
types of circles. Later
nodes will assemble
those edges into
numbers.

As a warning the
neural net here
would not be able to
input an 81 variable
input vector.

With only four output
nodes it would also
be unable to correctly
identify 10 digits.

Figure 6

The technologies
used to recognize
digits can be
transferred into more
complicated
problems like
recognizing faces.

Parts of faces can be
decomposed into
simpler geometric
shapes and the
shapes built up into
things like eyes and
noses and mouths.

Here we see partial
circles being
recognized in
numbers and
geometric shapes
being “found” on
photographs.

Figure 7

Some early software made histograms of “elements found” and compared the observed histogram frequency to some
ideal histogram. You can imagine that the software said, “ two cat ears, fur, two eyes with slits, one long wavy tail
and about twenty-four whiskers matches the histogram frequency for cat”. Some flexibility is required because, as
you can see from these pictures of movie stars above, not all pictures show all the components associated with a
type of animal. Both of these, professionally photographed, movie stars appear to have only one ear.

ALGORITHMS USED IN DEEP NEURAL NETWORKS:
A fairly deep dive into the algorithms involved in neural nets will help make some of the vocabulary more clear. Some
detailed, and worked out examples, will be very helpful to anyone studying this field.

This example is taken from “A Step by Step Backpropagation Example” by Matt Mazur and can be found at:
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example. Full details are in the appendix of this
paper.

In figure 8 we see
some of the notation
that we will use later
on in the paper and
in the appendix.

This is a small neural
net with two input
nodes, two hidden
nodes and two
output nodes.

It performs a binary
classification and will
assign probabilities
of being a “top” or
“bottom”.

Figure 8

For the observation currently being processed, input node one has a value of .05 and input node two has a value of
.10. Please remember that nodes, in other layers, have an input value, an activation function and an output value
and this leads to our naming convention. HNT–in stands for hidden node top path input. HNT-out stands for hidden
node top path output. In this neural net, since the output nodes have an activation function, output nodes also
contain two values.

 B1 and B2, in the white ovals, are bias variables. The weights of the bias variables, in any real neural net, will also
be trained to minimize the prediction error. We will not do that training in this example.

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example

Figure 9 shows
forward propagation.

Initially all the
weights are assigned
randomly to numbers
close to zero and the
numbers in this slide
are not
unreasonable.

Forward Prop starts
by taking the input
values and
multiplying them by
their weights and
sending them onto
the next node to the
right.

Figure 9

The .3775 in HNT-in is the sum of the weighted inputs to that node. The calculation for the .3775 is shown in a yellow
box in figure 9. The transform used inside all of these nodes is shown in the white box on figure 9 and is
1 / (1+ exp(-x)). HNT-out is: 1 / (1+ exp(-.3775)). If the process is repeated for all of the other nodes a reader can re-
create the input values and output values of the hidden and output nodes.

The observation also has an observed probability (this number is the result of a human rating and was contained in
the training data file) of being a “top” of .01. This observation has a probability of being a “bottom” of .99. The
predicted value for being a top is .7514 in the error component for top .2748. A similar process allows us to calculate
the error associated with bottom. If we sum the two errors we get the total error- for this observation and for these
weight values.

Now we now want to adjust the weights, in a very logical manner, so as to reduce the total error.

A neural network used to start with randomly assigned, near-zero, weights. The algorithm would read an observation
and adjust the weights. Prediction errors for the first several thousand observations would be large, but that was not
important. What was important was the final rules after thousands of “training cycles”. In a second step, the whole
data set could be “scored” by applying the derived rules. Neural networks can be sensitive to starting weights and,
now, there are several techniques that can replace, and improve on, a “random assignment of starting weights”,

Adjusting the weights is called “training the neural network” and often uses a process called “back propagation” (AKA
back prop). Back propagation involves taking the partial derivatives of the error with respect to each of the weights.
This involves using a calculus technique called the chain rule. In the paper itself, we will not show all of the steps
because several steps are repetitive. However, in the appendix we will paste, into the paper, all of the steps for a
backward propagation so that an interested reader can reproduce the work. It is hoped that the example in the
appendix is a valuable part of the paper.

The paper will start
by training weight
five (W5), the weight
in the gold box. W5
affects ONT-in and,
through the
activation function, it
also affects ONT-out
and thereby error.

The white box in
figure 10 shows the
chain of derivatives
we must
follow/calculate.

As you can see in
the white box, we
must calculate three
terms.

Figure 10

 Figure 11 shows the
calculation of the first
term in the equation
on Figure 10. We
calculate the partial
derivative of the total
error with respect to
ONT – out.

The value of this
term is .7414.

Note that changing
the value of W5 only
affects one error
term – the top error.

Figure 11

Figure 12 shows the
calculation of the
second term of the
equation. In this step
we move “our
number” “back
through” the
transform – back
through the activation
function.

 The second term of
the equation has the
value .1868.

Figure 12

Figure 13 shows the
calculation of the
third required term
and, in the large
white box, a reader
sees the
multiplication of the
three terms together.

This calculates that
the partial derivative
of the total error with
respect to W5 is
.082167.

Figure 13

Figure 14 shows the
final adjustment to
W5. Our formula
suggests that we
should adjust W5 by
.082167041 but this
is likely to be too
strong an
adjustment.

An adjustment this
large is likely to
cause the algorithm
to overshoot the
optimal and create a
situation where the
algorithm oscillates
wildly.

Figure 14

To avoid oscillation, back prop applies what is called a learning factor – the .5 in the equation. Because we set the
learning factor to .5, back prop applies just half of the adjustment that our formula suggests. This smaller adjustment
will result in the algorithm taking more steps to reach the optimal solution but software designers were willing to pay
that price to decrease the chance of unstable oscillations. Enterprise Miner allows a user to change the value of the
learning parameter.

Informally speaking, the .1868 and the .7414 are “characteristics” of the top output node. If a formula requires a
partial through output node top, these numbers do not need to be recalculated. Therefore; when adjusting W6, most
of the work is already done. Details of adjusting W6 are left to the appendix.

The training for W7 and W8 proceeds with steps similar to those in the example shown for W5. Details of those
adjustments are left to the appendix as well. Please note that adjusting weights W5 to W10 would only affect one of
the two error terms.

Adjusting the weights for W1, W2, W3 and W4 will be a different process from that of adjusting the weights W5 to W8.
The process of adjusting W1, W2, W3 and W4 will be more complicated than adjusting W5 to W8 because changing
W1, W2, W3 or W4 affects both of the error terms.

Figure 15 shows how
changing W1 affects
both of the error
terms. The top white
box shows that the
partial derivative
formula is very
similar to the one we
used before.

We want to be sure
to follow the yellow
arrow downward to
see how total error
has two error
components; top and
bottom.

The two error
components will
have make the
resulting process a
bit more complicated.
It will have two parts.

Figure 15

The new process for adjusting weights will have two components – one that recognizes the effect of a weight on the
top error and one that recognizes the effect of changing a weight on the bottom error.

Figure 16 is intended
to emphasize the
three-step process
that we must again
follow as we adjust
weights.

Fortunately, much
work has been done.

Numbers that were
described as
“characteristics of the
output nodes” will be
used in these new
formulas.

Figure 16

Figure 17
emphasizes that
there are two error
terms IONT and
ONB) that must be
accounted for as we
take the partial
derivative through
HNT.

The number coming
back to the output
side of HNT is .0364.
To take that partial
derivative through
the transform, in
reverse order, results
in the number
.241300700

Figure 17

Figure 18 shows the
three-part formula in
mathematical terms
(as partial
derivatives) and also
in numerical form.

The goal is to adjust
W1 in a manner that
reduce the error and
W1 could be
adjusted by
.00438568.

However this might
be too strong an
adjustment.

Figure 18

Adjusting by .00438568 might lead to overcorrection and wild oscillations. It is, generally, a better practice to take
smaller steps toward the goal than to take large steps and overshoot the goal. Instead of adjusting by .00438568,

Enterprise Miner will apply a learning factor (here .5) to reduce the size of the adjustment. In this example, the
algorithm will only make half the suggested correction in hopes of creating a more stable approach to our goal.

Note: this is a basic example of back prop and back prop is a hot area of research. Some newer algorithms will
monitor changes in error as learning progresses and, dynamically, adjust the learning rate. These newer algorithms
will “take bigger steps” towards the solution when possible.

The calculations for adjusting W2 to W4 are similar to those shown above and are left to the appendix.

RESTRICTED BOLTZMANN MACHINES (RBM):

The fact that back proposition involves the chain rule, and many multiplications, limited the depth of neural networks
for several years. As networks got deeper the back prop algorithm had to multiply more and more terms. Generally
those terms were close to zero and the repeated multiplication of small terms would drive the the result of the
calculation down close to machine accuracy.

The formulas used above were calculating the gradient, the slope of the error shape, with respect to the different
weights. When the formula drove the derivative of a weight to zero, the formula “told the algorithm” that there was no
chance of improving the error by adjusting that weight. Applying the above algorithm to deep nets made for long
training times and unstable answers. Nets were limited in depth until the application of the Restricted Boltzmann
machine (RBM) to neural networks.

A Restricted Boltzmann Machine has the advantage of giving the network good starting weights that are not close to
zero. A Restricted Boltzmann Machine avoids the problem of the vanishing gradient.

A RBM breaks a
Deep Neural
Network into many
two-layer networks
see right).

The first of the two
layers is called the
input layer and the
second layer, the
one on the right, is
called the hidden
layer.

The two-layer
network is trained so
that the second layer
simply reproduces
the values in the first
layer.

Figure 19

In figure 20 a reader
can see the next step
in the RBM. The
process is to freeze
weights between the
input layer and
hidden layer 1 and
shift the RBM one
layer to the right.

The RBM tries to
make the hidden
layer 3 reproduce the
values in the hidden
layer 2. This process
continues until all the
layers have been
trained

Figure 20

After all the layers
have been trained,
all their weights are
unfrozen and the
whole network is
trained.

Early algorithms
randomly assigning
starting weights
close to zero and this
exacerbated the
“vanishing gradient
problem”.

Weights from the
series of two-layer
RBM training steps
provide good, non-
zero starting weights
for training of the
network.

Figure 21

This technique avoids the vanishing gradient and has allowed researchers to use deeper and wider nets.

EXAMPLE: NEURAL NETWORKS ON HARD TO SEPARATE CLUSTERS

Figure 22 shows the
one of the example
problems that will be
developed in this
paper.

This example is from
SAS online
documentation.

A neural network will
be used to separate
these three groups.

The process will be
to run PROC Neural
in the SAS Display
Manager. Proc
Neural requires a
DMDB catalog entry.

Figure 22

PROC DMDB
creates a catalog
entry containing
metadata on the
variables in the data
set.

Think of PROC
DMDB is adding
information to what
one sees when
running a PROC
Contents.

Proc Contents shows
“data about the data”.

Figure 24

Figure 25 shows the
PROC Neural code
with explanations for
the statements.

SAS code to create
this data set will be
included in the
appendix so an
interested reader can
conveniently run this
example.

In the paper, we will
skip to output to
show how well this
neural net performed.

Figure 25

Figure 26 shows the
results of the PROC
Neural.

There were no
misclassifications.

This is exciting
performance on a
highly non-linear
data set.

Figure 26

PROC Neural
creates output data
sets and a
programmer that
wants to build a
PROC Neural into a
larger project must
understand the
output.

The output from the
PROC Neural will
likely be input to
some future steps.

Figure 27

As this figure
suggests, interpreting
the contents of
output from PROC
Neural can be
difficult.

E_ values depend on
the method used in
the Deep Neural
Network.

After much research,
I have not been able
to find a definition of
U_.

Figure 28

Rings was the input
data set and was not
changed.

Figure 29

EXAMPLE 2: PREDICTING LOAD DEFAULTS

This new example
will try to predict loan
defaults. This data
set is shipped with
SAS Enterprise
Miner and an
interested reader
easily can run this
code.

To the right, please
see the use of PROC
DMDB to create a
catalog entry for use
by PROC Neural.

Figure 30

This PROC Neural
call is fairly
complicated and
extends over two
slides. The red boxes
group similar types of
commands.

PROC Neural allows
a one to specify the
number of CPUs to
which s/he has
access and to allow
multithreading.

We are asking for
three hidden layers
Hidden layer1 has 36
nodes. Hidden layer
2 has 24 nodes and
hidden layer 3 has
two nodes.

Figure 31

This figure shows the
coding of the RBMs.
Each of the red
boxes is an RBM and
run in a sequence.
The boxes will freeze
and un-freeze
appropriate hidden
layers.

Figure 32

Since an interested
reader can run this
code, some output
will be skipped and
final results will be
shown. Of the 1189
defaulters on the
loan PROC Neural
identified 309, or
26%.

Importantly, No
alternative
architectures were
explored and the
naively created node
still correctly
classified 85% of the
people.

This example would
be a good starting
point for a reader
wishing to play with
neural networks

Figure 33

SUMMARY:
SAS PROC Neural is a very powerful modeling tool and analysts should consider some study of Deep Neural
Networks.

ACKNOWLEGMENTS:
Thanks to all the great people at SAS Tech Support.

CONTACT INFORMATION:
Your comments and questions are valued and encouraged. Contact the author at:
Russ Lavery, Contractor
Bryn Mawr, PA
russ.lavery@verizon.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

***************** APPENDIX ***************

The appendix has three sections:
1) Code for the separate three groups example (the “rings” example)

2) Code for the predict delinquency example

3) All PowerPoint slides for the back propagation

1) code for the separate three groups example (the “rings” example)

Data Rings;

infile datalines truncover firstobs=3;
input @1 Horiz 2. @5 vert 2. @10 Class_of_Y 1.;
datalines;
Horiz Vert Class_of_Y
1234567890
 2 9 0
 2 10 0
 3 8 0
 3 9 0
 3 10 0
 3 11 0
 4 7 0
 4 8 0
 4 9 0
 4 10 0
 4 11 0
 4 12 0
 5 6 0
 5 7 0
 5 8 0
 5 9 0
 5 10 0
 5 11 0
 5 12 0
 5 13 0
 6 5 0
 6 6 0
 6 7 0
 6 12 0
 6 13 0
 6 14 0
 7 4 0
 7 5 0
 7 6 0
 7 13 0
 7 14 0
 8 4 0
 8 5 0
 8 14 0
 8 15 0
 8 8 1
 8 9 1
 8 10 1
 9 3 0
 9 4 0
 9 15 0
 9 7 1
 9 8 1
 9 9 1
 9 10 1
 9 11 1
10 3 0
10 4 0
10 15 0
10 16 0
10 6 1
10 7 1
10 8 1
10 9 1
10 10 1
10 11 1
10 12 1

11 2 0
11 3 0
11 16 0
11 17 0
11 6 1
11 7 1
11 11 1
11 12 1
11 13 1
12 2 0
12 3 0
12 16 0
12 17 0
12 4 1
12 5 1
12 12 1
12 13 1
12 14 1
13 1 0
13 2 0
13 16 0
13 4 1
13 13 1
13 14 1
13 8 2
13 9 2
14 1 0
14 2 0
14 16 0
14 4 1
14 13 1
14 7 2
14 8 2
14 9 2
14 10 2
15 1 0
15 2 0
15 16 0
15 4 1
15 13 1
15 14 1
15 8 2
15 9 2
16 2 0
16 3 0
16 16 0
16 17 0
16 4 1
16 5 1
16 12 1
16 13 1
16 14 1
17 2 0
17 3 0
17 17 0
17 6 1
17 7 1
17 11 1
17 12 1
17 13 1
18 3 0
18 15 0

18 16 0
18 6 1
18 7 1
18 8 1
18 11 1
18 12 1
19 3 0
19 4 0
19 14 0
19 15 0
19 7 1
19 8 1
19 9 1
19 10 1
19 11 1
20 3 0
20 4 0
20 15 0
20 16 0
20 8 1
20 9 1
20 10 1
21 4 0
21 6 0
21 14 0
21 15 0
22 4 0
22 5 0
22 14 0
23 6 0
23 7 0
23 9 0
23 10 0
23 12 0
23 13 0
24 4 0
24 5 0
24 6 0
24 12 0
24 13 0
24 14 0
25 6 0
25 7 0
25 8 0
25 11 0
25 12 0
25 13 0
26 6 0
26 7 0
26 8 0
26 9 0
26 10 0
26 11 0
26 12 0
27 6 0
27 7 0
27 8 0
27 9 0
27 10 0
27 11 0
28 7 0
28 8 0

28 9 0
;
run;

PROC DMDB batch data=Rings
 out=DMDB_Rings
 dmdbcat=DMDB_CatRings;
 var Horiz vert ;
 class Class_of_Y;
 target Class_of_Y;
run;

proc catalog catalog=work.DMDB_CatRings;
contents;
run;quit;

proc SGPlot data=Rings;

PROC SGPLOT DATA = Rings;
 Scatter X = horiz Y = vert
 /group=Class_of_Y;
 YAXIS LABEL = 'Some equal interval variable' ;
 XAXIS LABEL = 'Some Other equal interval variable';
 TITLE 'Plot of the Circles (Rings) Training Data';
 INSET 'No Linear Boundary Exists'/ POSITION = TOPRIGHT BORDER;
RUN;

/*PROC GPlot data=Rings;*/
/* plot Vert*Horiz=Class_of_Y /haxis=axis1 vaxis=axis2;*/
/* symbol c=black i=none v=dot;*/
/* symbol2 c=red i=none v=square;*/
/* symbol3 c=green i=none v=triangle;*/
/* axis1 c=black width=2.5 order=(0 to 30 by 5);*/
/* axis2 c=black width=2.5 minor=none order=(0 to 20 by 2);*/
/* title 'Plot of the Circles (Rings) Training Data';*/
/*run;quit;*/

PROC Neural data=Rings
 dmdbcat=DMDB_CatRings
 random=789;
 input HORIZ VERT / level=interval id=i;
 target Class_of_Y / id=o level=nominal;
 hidden 3 / id=h;
 prelim 5;
 train;
 score out=out outfit=fit;
 score data=Rings out=gridout;
 title 'MLP with 3 Hidden Units';
run;

proc print data=fit noobs label;
 var _aic_ _ase_ _max_ _rfpe_ _misc_ _wrong_;
 where _name_ = 'OVERALL';
 title2 'Fits Statistics for the Training Data Set';
run;

proc freq data=out;
 tables f_Class_of_Y*i_Class_of_Y;
 title2 'Misclassification Table';

run;

2) code for the predict delinquency example

title "Home Equity and Defaults";
libname DeepL "E:____Conferences_2016\dATA_2_USE";
options nocenter;
ods listing;
proc contents data=DeepL.HmEq_home_equity varnum;
run;

proc print data=DeepL.HmEq_home_equity (obs=10);
run;

DATA HmEq_home_equity_Use;
 SET DeepL.HmEq_home_equity;
 RUN;QUIT;

PROC DMDB batch data=HmEq_home_equity_Use
 out=DMDB_HmEq
 dmdbcat=DMDB_Cat_HmEq;
 var /*bad*/ LOAN MORTDUE VALUE /*REASON JOB*/ YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC;
 class bad Job Reason;
 target bad;
run;

*** TRAIN 3 LAYER AUTOENCODER;
*two kinds of statements - actions and options;
options fullstimer;
title "3 layer Neural Network";
PROC Neural data=HmEq_home_equity_Use
 dmdbcat=DMDB_Cat_HmEq
 graph;
 performance compile details cpucount=4 threads= yes; /* ENTER VALUE FOR CPU COUNT */
 nloptions MaxIter=10000; / DO NOT EXCEED NUMBER OF PHYSICAL CORES
*/
 /* DEFAULTS: ACT= TANH COMBINE= LINEAR */
 /* IDS ARE USED AS LAYER INDICATORS - SEE FIGURE 6 */
 /* INPUTS AND TARGETS SHOULD BE STANDARDIZED */
 /*we have 13 variables, so I will recude the number of nodes down from the numbers in the recognize
numbers example*/
 archi MLP hidden= 3;
 hidden 36 / id= h1;
 hidden 24 / id= h2;
 hidden 2 / id= h3 act= linear;
 input LOAN MORTDUE VALUE /*REASON JOB*/ YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC
 / id= i level= int std= std;
 target bad / act= logistic id=t level= ordinal ;
 /* BEFORE PRELIMINARY TRAINING WEIGHTS WILL BE RANDOM */
 initial random= 123;
 prelim 10 preiter= 10;

 /* TRAIN LAYERS SEPARATELY */
 /*freeze i->h1*/ /*train the first layer*/
 freeze h1->h2;
 freeze h2->h3;
 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze i->h1;
 thaw h1->h2; /*train the second layer*/
 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h1->h2;
 thaw h2->h3; /*train the thirs layer*/
 train technique= congra maxtime= 10000 maxiter= 10000;

 /* RETRAIN ALL LAYERS SIMULTANEOUSLY */
 thaw i->h1;
 thaw h1->h2;
 thaw h2->h3;

 train technique= congra maxtime= 10000 maxiter= 1000;

 code file= ''; / ENTER SCORE CODE FILE PATH - SAME AS LINE 412 */

 score out=HmEq_out outfit=HmEq_fit;
 score data=HmEq_home_equity_Use out=HmEq_gridout;
 title 'complex MLP ';
run;

proc print data=HmEq_fit noobs label;
 var _aic_ _ase_ _max_ _rfpe_ _misc_ _wrong_;
 where _name_ = 'OVERALL';
 title2 '3 layer Fits Statistics for the Training Data Set';
run;quit;

proc freq data=HmEq_out;
 tables f_bad*i_bad;
 title2 '3 LAYER Misclassification Table';
run;

3) all PowerPoint slides for the back propagation

	CONTACT INFORMATION: Your comments and questions are valued and encouraged. Contact the author at: Russ Lavery, Contractor Bryn Mawr, PA russ.lavery@verizon.net

