Deep Neural Networks in SAS ® Enterprise Miner

By Russ Lavery
ABSTRACT:

Recent advances in algorithms and hardware (the GPU chip) have made it possible to build neural nets that are both
deeper and wider than had been practical in the past. This paper explores the theory, and a bit of the practice,
associated with the building of deep neural networks in SAS Enterprise Miner.

INTRODUCTION:

Neural networks got Vocabulary
that name because

of their similarity to
the way neurons
work in the human
body. Any web
research session on
this subject returns
mentions of neurons,
so a small anatomy
lesson might be
worthwhile.

A cell is not a piece
of undifferentiated
jelly. Cells have
structure and parts of
cells have specific
functions.

The cell has a
nucleus that contains
the DNA and parts
that connect the cell
body to other cells.

Figure 1
Dendrites are long stringy parts of the cell to take inputs. Axons send outputs to other cells. Your body is an
incredibly deep neural network and one of your nerve cells can have hundreds of thousands of connections to other
cells.

An input to the cell, maybe the feeling of a touch or sensing of a color in your eyes, comes in through a dendrite.
Cells have many dendrites and can receive many simultaneous inputs. The individual inputs are summed, and
“summed” is used in the same way that a mathematician would use the word, in a specialized part of the cell located
adjacent to the start of the Axon. This specialized part of the cell, called the Axon Hilllock, sums the different inputs
and if the inputs exceeds some threshold the Axon Hillock sends an electrical signal down the Axon towards other
cells (the cell “fires”).

At the end of the Axon, the electrical signal is converted into a chemical signal that leaves the cell. A chemical signal
bridges the gaps (the synapses) to other cells.

The important things to recognize are: 1) the huge numbers of connections between nerve cells and 2) the function of
the Axon Hillock. It's job is to sum the different inputs, some of which might increase the chance of sending out a
signal and some of which might decrease the chance of sending out a signal, and then to decide if it should send an
electrical discharge down the Axon.



Figure 2 shows a
small neural net but
the characteristics of
the small neural net
are present in larger
nets as well.

Nodes to the left are
sometimes called

“early” nodes. m

You might
A neural net can (Sex) “‘_"“;‘L::“
predict either binary lwiut 13
or interval data and Std
this net is trying to
predict someone’s put (Age)

weight from their sex,
age and height.

A network has three
types of nodes. (Height)

Figure 2

Networks have input nodes and there are three nodes in this input layer. Networks have internal (often called hidden)
nodes and layers. This net has two hidden/internal layers. The first layer has three nodes and the second layer has
two nodes. Networks have an output layer and this network has one node in the output layer.

The network in figure 2 is a feedforward node. Each node in a layer to the left is connected to every node in the layer
immediately to its right. There are no connections backwards between nodes, so no arrows point to the left. Finally
there are no connections between nodes in the same layer.

Inside each node is a function (represented by the letter F in the circles). These functions are referred to as
activation functions, transfer functions or simply transforms. The functions are usually nonlinear and common ones
are linear, logistic, hyperbolic tangent and Gaussian. The fact that these transfer functions are usually non-linear
makes the whole neural network non-linear. A neural network has the ability to separate groups (and that is what
predicting a binary Y is doing) with a boundary that is very curved and irregular.

The basic process is to take the values of a person’s sex, age and height and enter them into the input nodes. The
input variables are often standardized to remove the effects of different measurement units. The values of sex, age
and height are multiplied by the weights (the red Ws) and the result is passed on to the internal nodes. Each internal
node receives many inputs. Some people think of neural network weights as being similar to the beta coefficients in
a regression. Neural net weights, like regression beta values, are measures of how much impact an X variable has
on the Y variable. Arrows indicate how values are combined. At the right side of the network, the sum of weighted
inputs (after going through all the nodes) is compared to a known Y value and an error is calculated. The back
propagation algorithm then takes the derivative of the error with respect to each of the weights and uses that
derivative to adjust the weights to produce a smaller error.

Think of each person’s sex, age and height entering this network - the three variables enter simultaneously - one
person at a time. The weights are, for the first person read, set to random numbers and they produces large errors.
After each observation is processed, the weights are adjusted to reduce the error and after many (often several
thousands) subjects are processed, the weights can predict the Y value with small error. A second pass is needed,
using the final weights, to score all the observations.

If a reader looks at the top node in the first internal layer s/he can see that it has inputs from sex, age and height as
well as from a one (coming from a yellow box). The one is called a bias term and it is used to adjust the summed
values from the input node so that the result, after adding in the weighed bias, has a value that does not “overload”
the transform function. Overloading is most easily explained by thinking of the activation function as being a



Gaussian transform — a bell shaped transform. The input to the activation function is the Z value (the summed
weighted inputs from previous nodes) for the Gaussian and the output of the transform is the height of the bell above
that value of Z. If Z is +3, the transform returns a value close to zero. If Z is +8, the transform also returns a value
close to zero. After a Z value exceeds a certain absolute value, the transform returns, for practical purposes, the
same value and is both “overloaded” and no longer sensitive to changes in Z. The bias is used to “move” the value of
Z back to a value where the transform function is more sensitive to changes in Z.

Inside the node, the inputs are summed and then pushed through the function in the middle of the node to produce
an output value for the node. | tend to think of each node as holding two numbers: an input number and an output
number. An input number is the weighted sum of all of the values coming in from the left and the weighted bias. An
output value is the one number that is a result of applying the transform function (also called activation function) to
the summed weighted input values (the input number).

In early research, the activation functions were often just step functions. If the summed weighted input values was not
above a certain level (a cutoff number), no value (or maybe a zero) was passed on to nodes to the right. Now the
nodes use smooth S shaped functions (or maybe bell-shaped) and they always pass on some value to nodes to the
right — though the value may be small.

Given enough nodes, and layers, you can model any data set to any desired level of accuracy — though it might take
a very long time if the data set is large.

If you feed, into the network, an X variable that has no predictive power (e.g. a code for “blue eyes” vs “not blue
eyes” in our problem of predicting weight) the neural net will eventually assign weights of zero to eye color. If you
have enough data, and enough time to wait for the algorithm to run, a neural net will remove non-predicting variables
by setting their weights to zero. However including a lot of silly variables as inputs will make the neural net run longer
and possibly increase the chance of it finding a local Optima.

Figure three shows
some of the
activation functions
that researchers use.

Linear is often used
to connect the last
hidden layer to the
output layer.

Hyperbolic tangent
and Gaussian
activations are also
commonly used in
other parts of the
network.

Figure 3



Figure 4 facilitates a
discussion of why
non-linear functions

are so commonly ) -

used. £l - (Actual to g+
Ideal) °

Distance

Biologists think that
frogs’ brains contain
two neural networks
to help it find flies to
eat.

One network
matches the size of
the object to the size
of an ideal fly. The
other network
matches the “flying
behavior” to that of
an ideal fly.

Figure 4

This paper will next discusses how a frog might use a Gaussian function to evaluate several potential meals. The
choices are: a small fly (red border and arrow), a large fly (blue border and arrow), a bird (green border and arrow)
and a moose (blue border and arrow). The activation functions are mound shaped and the X value (horizontal value)
generated by each object are “object distance from ideal”. Close to the ideal points, the function returns a large value
(it “fires™). There is a cut-off value, shown as a horizontal line on the function, at which point the frog decides if
“eat=True” or “eat=False” (or “activate” vs “not activate”, “fire” vs “not fire”).

For the small fly, both the size and flying behavior are close to the ideal (see red arrows). Both networks return a
large, “above the cut-off’, value and “lunch is served”. For the large fly, the size is a bit off-putting, though the flying
behavior is close to the ideal (see blue arrows). Both networks return large values and the frog would likely attack.
Because of the non-linear shape of the activation function, the networks are sensitive to small changes in the area of
the “ideal”.

For the bird, the size and behavior are both wrong (see green arrows) and the networks return two low values. For
the moose, both the size and behavior are very wrong (see black arrows) and the networks return two low values.
Because of the non-linear shape of the activation functions, the values returned for the bird and moose are similar.
This makes sense because once the frog had decided that an object is “not lunch” it does not need to make fine
evaluations of “how much not lunch” an object might be. Because of the shape of the non-linear activation function,
the networks are NOT-sensitive to small changes far from the “ideal”.




Figure 3 shows a
larger net, though far

from being a very {Deep) Convolutional Neural Networks
large net these days.
;roeulggnojee there Might be and edge node or corner node?

Connections between The herarchy of -:-'.mc-::ns_ i capeeed in the number of layers the deep in Deep Learnmg
lots of nodes.

Neural nets are used Deap neural
in digital cameras to networks learn
identify faces of hierarchical featuro

people in a picture. representations

Much exciting work is
being done in visual
recognition using
neural networks.

Might be an “ear” node | Might be an

htep://pages. cs . wise . edu/-bolo/abipyard/nearal /local  html ﬁe“ﬂ nﬂdﬂ

Figure 3

There was, and to some extent still is, a criticism of deep neural nets that they are black boxes — that the results can
be very good but no one can understand how the results are created. Recent research has made that statement less
true. Visual recognition research has allowed people to peek inside of neural nets and discover some exciting
findings. This paper will discuss the internal processes of neural networks using pictures as the research issue.

It seems that early layers in the net identify basic visual building blocks; like edges going from light-to-dark or dark-to-
light. Nodes farther to the right, in the net, can create higher level abstractions. Nodes in the middle of a neural net
might identify parts of faces, like ears or noses. Nodes to the far right of the neural net can reconstruct faces and
even recognize people.

WAYS TO USE SAS TO CREATE NEURAL NETWORKS:
SAS Enterprise Miner has four ways to do neural nets.

DMNeural uses bucketed principal components as X variables and can predict a binary or interval Y. HPNeural is
designed as a high performance modeling tool. It will access memory across multiple cores and multiple computer
nodes. It is not good for deep neural nets because it does not provide protection against the problem of vanishing or
exploding gradients. Auto Neural conducts limited searches to help you find a better network architecture. It will try
different numbers of layers and nodes as well as different activation functions.

Neural network is the SAS work horse for doing neural nets and will process a deep neural network. It provides the
most control and most power of the choices that SAS provides. In order to do a deep neural net you must have
Enterprise Miner installed, but it is easy to code a PROC Neural in the SAS display manager once you have installed
Enterprise Miner.

A NEURAL NET PROCESS:

Good Neural Network results are the result of a multi-step (multi-node?) process and this paper will examine some of
the other steps. Good neural network results come from a process and the work done before the neural net is
important. Steps in a good process might be:



Sampling can reduce the time to train a neural net and quick run times are always desirable. A researcher must
balance the desire for quick run times with the fact that training a complex neural network to do a complex task
requires lots of training data. To some extent, the quality of the results depends on the quality, and amount, of the
training data.

Programmers usually want to create partitioned data sets to allow SAS to automatically report on how well the neural
net performs on data that is different from the training data.

Consulting with business experts, and doing exploratory modeling, can reduce the number of variables that must be
feed into the neural net. Often having fewer, and higher quality, input variables reduces training time and improves
the results.

An analyst might want to impute missing values or transform data before passing it into a neural net. Neural nets are
highly non-— linear but transforms of the X variables can reduce training time.

A programmer might want to remove outliers because they can reduce model accuracy.

A neural net usually needs a data mining database (DMDB) catalog entry and a researcher might need to run PROC
DMDB be before her neural net will run.

Finally, in a neural net project, an analyst might also want to use other modeling nodes. It might be that the neural net
is not the best technique for any particular use case.

A “COCKTAIL PARTY” HISTORY OF NEURAL NETWORKS

The seminal article for neural nets was written by Donald Hebb in 1949. He wrote, about neurons in the body and
said, “when an Axon of cell A is near enough to excite cell B, and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.” Hebb was hypothesizing that “neurons that fire together wire together” and his article was the
start of an explanation of how neurons are involved in learning and memory.

Efforts to make computers work like human cells started soon after Hebb’s article. People were doing research using
computers and electrical circuits in the 1950s. In 1963 Vapnik and Chervonenkis discovered the idea of the support
vector machine.

A book, in 1963, threw a major monkey wrench into neural net research. Papert and Minsk, in their book titled
“Perceptrons”, demonstrated that a single node can classify successfully only if the Y classes in the data are linearly
separable. They also proved that a single layer perceptron could not learn the logical XOR function. The inability to
learn the XOR function was seen as a major, and general, flaw in neural networks and machine leaning. Research
interest plummeted.

Interest was revived when, in 1974, Paul Werbos invented a training method called backward propagation. This
allowed for the creation of multi-node and multi-layer neural nets, though it ran into a problem called “the vanishing
gradient” when applied to large nets.

Restricted Boltzmann machines were invented by Smolensky in 1986 but became important in the early 2000s as
Geoffry Hinton applied them to machine learning and the creation of Deep Neural Networks.



In 1981 Hubel and
Wiesel won a Nobel
Prize for work on
neuronal activities
and vision. They had
embedded an
electrode in a cat
brain and struggled
to measure some
sort of neuronal
activity driven by
pictures projected in
front of the cat.

The cat who saw the edge

Electrosde im
cal’s brabn
e,

Their first signal
came when the cat
saw a straight line as
they changed slides.

https://'www.youtube.com/watch?v=10Hayh06LJ4
https:/'www.youtube.com/watch?v=9qgg9-nBjUT:

https:/iwww.youtube.com/watch?vEVPQAtkxn3tY

Figure 4
It turns out that lines, or edges, might be important for both animal vision and for computer vision. In figure 3 we can
see that early layers in the artificial neural net seem to be detecting lines of varying types.

Research into vision is particularly amenable to discovering what's going on in the inner layers of the neural net. This
paper will discuss some image recognition tasks, and logic, as a way of building familiarity with the neural net internal

process.

In figure 5 we get
some idea of how
pictures are coded.

In this figure we see
how early number
recognition research
was coded.

Numbers were
written on an input
area that had been

The input vector
is 81 rows by 1
column...

hard to fit on

divided intoa9x9 "
grid (one can obtain slide
better results if —
coding is at a pixel This is -
level but this is hard oloBlalal1lolo
to put on a ppt). otalsiolzlslotol Bigger Just PART OF
o[slg[o/o[e|ojo] numbers
Each cell was coded 0[8[B[0]0[8]0[0] | ;ndicat the input vector
as to dark vs light. olalblelalalolo indicate a for the “9”
olo[b[1]3[alo[o] larger % of
0|0 1|7|1(0|0
ojo S(1|0(0]|0 thﬂhﬂx”
olofblololo]ojo]  “filled in

Figure 5
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The 81 cells were arranged in an 81 x 1 input vector and that input vector could be sent to a neural net with 81 input
nodes. A little thought, and a peek at the number “2” in the middle of the slide, will lead a reader to recognize that
numbers might need to be adjusted for position, and size, before being put into the neural net input vector. Above is a
basic process for number recognition. State-of-the-art vision technology, attempting to recognize people and objects
in photographs, will input each pixel level - coded for multiple colors - and the input vector will be much larger.

Early nodes in the
network assemble
the pixels into things
like: vertical edges,
horizontal edges (see
right), angles or
types of circles. Later
nodes will assemble
those edges into
numbers.

As a warning the
neural net here
would not be able to
input an 81 variable
input vector.

With only four output
nodes it would also
be unable to correctly
identify 10 digits.

Figure 6

The technologies
used to recognize
digits can be
transferred into more
complicated
problems like
recognizing faces.

Parts of faces can be
decomposed into
simpler geometric
shapes and the
shapes built up into
things like eyes and
noses and mouths.

Here we see partial
circles being
recognized in
numbers and
geometric shapes
being “found” on
photographs.

Figure 7

What do the layers and nodes learn?

Vertical edges

689347
429556
870943

hidden byger 1 Hdden byer 2 hidddes Tagyer 3

iz layer

Half circles




Some early software made histograms of “elements found” and compared the observed histogram frequency to some
ideal histogram. You can imagine that the software said, “ two cat ears, fur, two eyes with slits, one long wavy tail
and about twenty-four whiskers matches the histogram frequency for cat”. Some flexibility is required because, as
you can see from these pictures of movie stars above, not all pictures show all the components associated with a
type of animal. Both of these, professionally photographed, movie stars appear to have only one ear.

ALGORITHMS USED IN DEEP NEURAL NETWORKS:

A fairly deep dive into the algorithms involved in neural nets will help make some of the vocabulary more clear. Some
detailed, and worked out examples, will be very helpful to anyone studying this field.

This example is taken from “A Step by Step Backpropagation Example” by Matt Mazur and can be found at:
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example. Full details are in the appendix of this
paper.

In figure 8 we see Theory: Notation
some of the notation
that we will use later
on in the paper and UL ST Hidden Node Top - output Output Nodé Top - output
in the appendix. HNT-out ONT-out
Input
This is a small neural Node Top - | Hidden Node Top - input
net with two input input HHT-in
nodes, two hidden IMNT-out

nodes and two
output nodes.

It performs a binary
classification and will
assign probabilities
of being a “top” or
“bottom”.

Figure 8

For the observation currently being processed, input node one has a value of .05 and input node two has a value of
.10. Please remember that nodes, in other layers, have an input value, an activation function and an output value
and this leads to our naming convention. HNT—in stands for hidden node top path input. HNT-out stands for hidden
node top path output. In this neural net, since the output nodes have an activation function, output nodes also
contain two values.

B1 and B2, in the white ovals, are bias variables. The weights of the bias variables, in any real neural net, will also
be trained to minimize the prediction error. We will not do that training in this example.


https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example

Figure 9 shows Theory:
forward propagation. Forward Propagation

Initially all the - —

weiohie are sssigned Forward Prop is simple
randomly to numbers
close to zero and the
numbers in this slide

are not (-05*.15) + (.1*.20) + (1*.35) = .3775 1/(1 + exp(-.3775))

unreasonable. Error total=.2748 + .02356 = .298371

the transform inside the node is : 1};(14_ e-x) = 1"'(1+ @ -im)

Forward Prop starts
by taking the input
values and
multiplying them by

their weights and Lﬂ W85 .45
sending them onto
the next node to the
right.
L3825 | .5069 ’A; {.99-,7729)2
-/ =.02356
ol \ A Jhras

Figure 9

The .3775 in HNT-in is the sum of the weighted inputs to that node. The calculation for the .3775 is shown in a yellow
box in figure 9. The transform used inside all of these nodes is shown in the white box on figure 9 and is

1/ (1+ exp(-x)). HNT-outis: 1/ (1+ exp(-.3775)). If the process is repeated for all of the other nodes a reader can re-
create the input values and output values of the hidden and output nodes.

The observation also has an observed probability (this number is the result of a human rating and was contained in
the training data file) of being a “top” of .01. This observation has a probability of being a “bottom” of .99. The
predicted value for being a top is .7514 in the error component for top .2748. A similar process allows us to calculate
the error associated with bottom. If we sum the two errors we get the total error- for this observation and for these
weight values.

Now we now want to adjust the weights, in a very logical manner, so as to reduce the total error.

A neural network used to start with randomly assigned, near-zero, weights. The algorithm would read an observation
and adjust the weights. Prediction errors for the first several thousand observations would be large, but that was not
important. What was important was the final rules after thousands of “training cycles”. In a second step, the whole
data set could be “scored” by applying the derived rules. Neural networks can be sensitive to starting weights and,
now, there are several techniques that can replace, and improve on, a “random assignment of starting weights”,

Adjusting the weights is called “training the neural network” and often uses a process called “back propagation” (AKA
back prop). Back propagation involves taking the partial derivatives of the error with respect to each of the weights.
This involves using a calculus technique called the chain rule. In the paper itself, we will not show all of the steps
because several steps are repetitive. However, in the appendix we will paste, into the paper, all of the steps for a
backward propagation so that an interested reader can reproduce the work. It is hoped that the example in the
appendix is a valuable part of the paper.



The paper will start
by training weight
five (W5), the weight
in the gold box. W5
affects ONT-in and,
through the
activation function, it
also affects ONT-out
and thereby error.

The white box in
figure 10 shows the
chain of derivatives
we must
follow/calculate.

As you can see in
the white box, we
must calculate three
terms.

Figure 10

Figure 11 shows the
calculation of the first
term in the equation
on Figure 10. We
calculate the partial
derivative of the total
error with respect to
ONT — out.

The value of this
termis .7414.

Note that changing
the value of W5 only
affects one error
term — the top error.

Figure 11

Backward Propagation
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Figure 12 shows the
calculation of the
second term of the
equation. In this step
we move “our
number” “back
through” the
transform — back
through the activation
function.

The second term of
the equation has the
value .1868.

Figure 12

Figure 13 shows the
calculation of the
third required term
and, in the large
white box, a reader
sees the
multiplication of the
three terms together.

This calculates that
the partial derivative
of the total error with
respect to W5 is
.082167.

Figure 13
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Figure 14 shows the
final adjustment to
WS5. Our formula

suggests that we Rl — _(ONTtarget — ONTout) + ONTout*(1 - ONTout) * HNTout
should adjust W5 by dws

:082167041 but this A =delta = =(0ONTtarget — ONTout) + ONTout*(1 - ONTout)

is likely to be too ;

strong an SELOTAl _  n g Trag — _ . dErotal

adjustment. ws - & HMNTout W5 — [ LearnRate » e

An adjustment this
large is likely to
cause the algorithm
to overshoot the
optimal and create a
situation where the
algorithm oscillates
wildly.

(-.99-.7729)2
=.02356

Figure 14

To avoid oscillation, back prop applies what is called a learning factor — the .5 in the equation. Because we set the
learning factor to .5, back prop applies just half of the adjustment that our formula suggests. This smaller adjustment
will result in the algorithm taking more steps to reach the optimal solution but software designers were willing to pay
that price to decrease the chance of unstable oscillations. Enterprise Miner allows a user to change the value of the
learning parameter.

Informally speaking, the .1868 and the .7414 are “characteristics” of the top output node. If a formula requires a
partial through output node top, these numbers do not need to be recalculated. Therefore; when adjusting W6, most
of the work is already done. Details of adjusting W6 are left to the appendix.

The training for W7 and W8 proceeds with steps similar to those in the example shown for W5. Details of those
adjustments are left to the appendix as well. Please note that adjusting weights W5 to W10 would only affect one of
the two error terms.

Adjusting the weights for W1, W2, W3 and W4 will be a different process from that of adjusting the weights W5 to W8.
The process of adjusting W1, W2, W3 and W4 will be more complicated than adjusting W5 to W8 because changing
W1, W2, W3 or W4 affects both of the error terms.



Figure 15 shows how
changing W1 affects
both of the error
terms. The top white
box shows that the
partial derivative
formula is very
similar to the one we

used before. dEtotal JdE ONT  9E ONB
= *
dHNTout  dHNTout JHNTout

dEtotal dEtotal AHNTout GHNTIn
= + *
dwl dHNTout dJHNTIn dwl

We want to be sure
to follow the yellow
arrow downward to
see how total error
has two error
components; top and
bottom.

The two error
components will

have make the
resulting process a
bit more complicated.
It will have two parts.

Figure 15

The new process for adjusting weights will have two components — one that recognizes the effect of a weight on the
top error and one that recognizes the effect of changing a weight on the bottom error.

Figure 16 is intended
to emphasize the
three-step process
that we must again
follow as we adjust
weights.

Fortunately, much
work has been done.

Numbers that were
described as
“characteristics of the
output nodes” will be
used in these new
formulas.

Figure 16



Figure 17
emphasizes that
there are two error
terms IONT and
ONB) that must be
accounted for as we
take the partial
derivative through
HNT.

The number coming
back to the output
side of HNT is .0364.
To take that partial
derivative through
the transform, in
reverse order, results
in the number
.241300700

Figure 17

Figure 18 shows the
three-part formula in
mathematical terms
(as partial
derivatives) and also
in numerical form.

The goal is to adjust
W1 in a manner that
reduce the error and
W1 could be
adjusted by
.00438568.

However this might

be too strong an
adjustment.

Figure 18

Adjusting by .00438568 might lead to overcorrection and wild oscillations.
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Itis, generally, a better practice to take

smaller steps toward the goal than to take large steps and overshoot the goal. Instead of adjusting by .00438568,



Enterprise Miner will apply a learning factor (here .5) to reduce the size of the adjustment. In this example, the
algorithm will only make half the suggested correction in hopes of creating a more stable approach to our goal.

Note: this is a basic example of back prop and back prop is a hot area of research. Some newer algorithms will
monitor changes in error as learning progresses and, dynamically, adjust the learning rate. These newer algorithms
will “take bigger steps” towards the solution when possible.

The calculations for adjusting W2 to W4 are similar to those shown above and are left to the appendix.
RESTRICTED BOLTZMANN MACHINES (RBM):

The fact that back proposition involves the chain rule, and many multiplications, limited the depth of neural networks
for several years. As networks got deeper the back prop algorithm had to multiply more and more terms. Generally
those terms were close to zero and the repeated multiplication of small terms would drive the the result of the
calculation down close to machine accuracy.

The formulas used above were calculating the gradient, the slope of the error shape, with respect to the different
weights. When the formula drove the derivative of a weight to zero, the formula “told the algorithm” that there was no
chance of improving the error by adjusting that weight. Applying the above algorithm to deep nets made for long
training times and unstable answers. Nets were limited in depth until the application of the Restricted Boltzmann
machine (RBM) to neural networks.

A Restricted Boltzmann Machine has the advantage of giving the network good starting weights that are not close to
zero. A Restricted Boltzmann Machine avoids the problem of the vanishing gradient.

A RBM breaks a
Deep Neural
Network into many Restricted Boltzmann Machines (AKA REMs)
two-layer networks
see right).

The first of the two
layers is called the
input layer and the
second layer, the
one on the right, is
called the hidden
layer.

The two-layer
network is trained so
that the second layer
simply reproduces
the values in the first
layer.

Figure 19



In figure 20 a reader
can see the next step
in the RBM. The
process is to freeze
weights between the
input layer and
hidden layer 1 and
shift the RBM one
layer to the right.

The RBM tries to
make the hidden
layer 3 reproduce the
values in the hidden
layer 2. This process
continues until all the
layers have been
trained

Figure 20

After all the layers
have been trained,
all their weights are
unfrozen and the
whole network is
trained.

Early algorithms
randomly assigning
starting weights
close to zero and this
exacerbated the
“vanishing gradient
problem”.

Weights from the
series of two-layer
RBM training steps
provide good, non-
zero starting weights
for training of the
network.

Figure 21

This technique avoids the vanishing gradient and has allowed researchers to use deeper and wider nets.

EXAMPLE: NEURAL NETWORKS ON HARD TO SEPARATE CLUSTERS



Figure 22 shows the
one of the example
problems that will be
developed in this
paper.

Two Examples Finding Irregular and Nested clusters

This example is from
SAS online
documentation.

A neural network will
be used to separate
these three groups.

The process will be
to run PROC Neural
in the SAS Display
Manager. Proc
Neural requires a
DMDB catalog entry.

Some squal interval vanahle

15
Soma CHhar egual imanval vanable

Class f ¥ o0 a1 o2

Figure 22
PROC DMDB
creates a catalog
entry containing
metadata on the S*Proc Heural needs a catalog entey*/
variables in the data PROC DMDE batch data=Rings
set. .
out=DMDE_Rings

Think of PROC DhDBCat:DlmB_CatR:.ngs ;
DMDB is adding var Horiz vert ;
information to what
one sees when class Class_of ¥;
running a PROC
Contents. — — —

B 545 - [Exarnples_from_decurmntgelf)
Pdrotc antetrltﬁ SSO:VS T File Edit View Tools #in Solsions Window  Help
“data about the data”.

: - DERISRAlY o

@ Tang
d 11
ey FPROC DMDB batch data=Rings

1 out=DHDB_Ringa

chndh:nt-ﬂiﬂ!_tntﬂ:nqs:
war Hariz wert
class Class_of ¥:

target Clasa_of ¥:

an;

Drndb_catr.. Dmdb_nings

Figure 24



Figure 25 shows the
PROC Neural code
with explanations for
the statements.

SAS code to create
this data set will be
included in the
appendix so an
interested reader can
conveniently run this
example.

In the paper, we will
skip to output to
show how well this

neural net performed.

Figure 25

Figure 26 shows the
results of the PROC
Neural.

There were no
misclassifications.

This is exciting
performance on a
highly non-linear
data set.

Figure 26

data=Rings Data

dmdbcat=DMDE_CatRings¢ Catalog
random=780. Iinitialize weights randomly

input HORIZ VERT / level=interval 1d=i;
target Class of ¥ / id=o level=nominal;

Model

hidden 3 / id=h; 1 layer and 3 nodes

prelim 5; Do preliminary weight training

BAENH frain now

score out=out ouCiit=L[1T; Scoring files: in and out
score data=ssampsic.dmsring cut=gridout;

title "MLP with 3 Hidden Units';
run;

MLP with 3 Hidden Units
Misclassification Table

The FREQ Procedure

Table of F_Class_of ¥ by |_Class_of ¥

I_Class_of ¥(into: Class_of
F_Class_of Y[From: '~ 2e-of.¥lln otY)

Class_of Y} ] 1 2| Total
o 118 li] li] 118
BOB4| 000 000 6484

100.00( 000 000
100.0a( 000 000

1 1] 56 1] 55
000 |( 2077 000 3077
0.00 |(100.00 | 0,00
0,00 |(100.00 | 0,00

F 1} 1} a a
000 000) 440( 440
000 | 000 | 100,00
0:00| 0.00 |100.00

Tatal 118 56 g 182
GAB4 | 3077 440 100.00




PROC Neural
creates output data
sets and a
programmer that
wants to build a
PROC Neural into a
larger project must
understand the
output.

The output from the
PROC Neural will
likely be input to
some future steps.

Figure 27

As this figure
suggests, interpreting
the contents of
output from PROC
Neural can be
difficult.

E_ values depend on
the method used in
the Deep Neural
Network.

After much research,
| have not been able
to find a definition of
U_.

Figure 28

soore out=out
score data=Rings

Data Set Out oubfit=11t;

out=gridout;

Actual target
minus the output

Standardized X
Vars.

Prob of being in
group

data namesd ot

Obs 'S Moz §_van ] h2 %! L_cm:_a_ﬂ- P_Class_of ¥1 F_cmu_d_ﬂ"n_nu_nr_w H_Class_of ¥1 R_Class of ¥2
1 183161 0.MET 09657 -0 W4T 096561 .50 DG4S ] Q0TS - (006 Ta6 ]
2| 183151 | 022750 096273 0.91E1E 03N 10000 OmDIMT D OMIDIMT1 | - DODIOMT 1
5 1063 02FE 0T 040 097N 1. iE LUl ] ] (i6A5) - (NG4S0 i
4| 16EI7 001323 03432 0OME 09820 15908 OM0HEE | 2EMEIE OMDEE  -DO0D1EIS . 2 EIMEEE
5 1563 0270 0934 0.M20 0967 100000 DLCHOER] ] 04306 - (0004 506 ]
B -16E123 | 045822 D937 0.B5TA3 03801 100030 OMIDIDSSE | 1 1102EE QGI0ODSSE | -DOCOOOEIE -1 MQZEE
T 164600 049488 092060 0 M3E 09430 .50 (000200 ] Q00206x - X0 ]
B| 154500 125985 091389 0B 036417 159596 OMI03SHE D ODIOISHE | - DIDISME 1
8| 154500 | 1.01323 | 090674 000054 09776 QMW7 OWOEE | 1 T0ZEE WEE -WMHEE 111028
10 154500 0.22750 \p389nd 0.BA3TE DIESHE 188my 0EIME D OMMIZT | - DIDIEAI3 1

Value inside the node after
transform was applied

soore oubk=oub

score data=Rings
I_: category with highest prob
u:
F_: formatted value of target

oublfit=rit;

E_ isquared error far out=gridout;

each case, Can be
deviance or negative
log likelihood

|depending on

Original
Variables

[ |

E_Class of ¥ E Class of ¥1 E _Class of ¥2 ) Class of ¥ U Class of ¥ F Class of ¥ WARN_ Horiiz vert Class_of ¥
200017451
OnDIEMT
00032000
00023TrS
L0036
0000 352
00241
00070053
S0DEITTE
oaoo1a2de

L= R - T - - I - - - I -
- RE-BE-NN-RE-NE-RE-BE-BN-J
[ - I I - T - B - T - T -

R T T T ]
"ol w8 8 a @

\_'_J ‘
Shows codes 4 ;ur-alun} for prnhlhﬁ
computing values or making decisions




Rings was the input
data set and was not

changed. Data Set RINGS score oubl=out

acore data=Rings

data set named rings

Obs Horiz vert Class_of ¥
1 2 9
10

]
9
10

[7- T - - IR I - R % TR S P R Y]
o o a a9 2o o o a O

B s e e W W L L B

-

Figure 29

EXAMPLE 2: PREDICTING LOAD DEFAULTS

This new example
will try to predict loan
defaults. This data

set is shipped with Croath
SAS Entgrr:)rise ity Lo WALUE REASON JOB WO DERDG DELING CLAGE HINO CLMO | DEETINC

Miner and an Janstie |IvEe) e Fomsirrp G W5 8 & MM 1
interested reader

easily can run this
code.

Hominng A i Z 121813 L]
Herrslrg 41 I B 149 887 1

BaD Huam
LOAN

14 031
44 101 456
SRR 54 . Ne
23502 114 B TEE
] 14 18 913
% 115 8

HmEq home egquity Use; Data
Deepl.HmEgq_homs_eguity:
BRI ; QUIT;
FROC DMDE batch data=HmEgq home sgquity Use DMDE
out=DMOE_ HmEg dmdbcat=DMDE_Cat  HmEg;
wvar J*bad*/ LOAN MORTDUE VALUE /*RERSCH gﬁ“lﬂg
YO0 DERCSG DELIMQ CLASE NIMNQ CLNG DEBTIMC:
class bad Job Beason:
target bad;
run;

To the right, please
see the use of PROC
DMDB to create a
catalog entry for use
by PROC Neural.

m M = M h e LW A = B

]
L]
8
L]
7
7
]
§
8
]
8
]
L]

Sae Type
08 Catzlg
HOOKE Task
CHmeq home squity use LGNS Talake

Figure 30



This PROC Neural
call is fairly
complicated and

extends over two options fullstimer; title "3 layer Meural Hetwork":
slides. The red boxes | FRO¢ Heural d"t":ﬂ:';"q—“m;::‘““'w—"“ Data
group similar types of :::": o DMDB_Cat_HmEq < Catalog
commands. performance compile details opusountmd threadseyes: options
?* EMTEER CPUO COUMT DO HOT EXCEED MUMBEERE COF PHYSICAL CORES *.-n'
PROC Neural allows /* DEFAULTS: ACT= TAMH COMBINE= LINEAR */
a one to specify the /% IDS ARE USED AS LAYER INDICATORS - SEE FIGURE 6§ +/
number of CPUs to [* IMPUTS AND TARGETS SHOULD BE STANDARDIZED #/
which s/he has archi MLP hiddenm 3; 3 layers
access and to allow hidden 36 / idm hl: 36
. ) . 3 nodes
multithreading. hidden 24 / id= h2:
hidden 2 / id= h3 act= lineax; 24 nodes
We are asking for 2 nodes
three hidden layers
Hidden Iayerl has 36 input LOAN MORTDUE VALUE /+BERSOM JOBE*/ YOJ DEROG DELINQ CLAGE NINQ
nodes. Hidden layer CLNG DEBTINC Specify Model
2 has '24 nodes and J id= i level= int std= std:
hidden laver 3 has targ‘:t bad / act= luﬂistic id=t level= ocxrdinal :
Wo nodeg J* BEFORE PRELIMINARY TRAINING WEIGHTS WILL BE mﬂﬂ*ﬁrﬂ“minﬂry
. initial randomm 123 traini f iaht
pralim 10 preiter= 30; | More code raining ot weighis

Figure 31

This figure shows the
coding of the RBMs.
Each of the red

boxes is an RBM and / *?f];;“r”z"i“il_':ﬁff o " )
run in a sequence. freeze hl-»h2: Slide Freeze hidden layers 123

The boxes will freeze fresze hZ—>h3: Train input=>hidden layer1

and un-freeze train teshnigues scongra maxtimes 10000 maxiters 10000

appropriate hidden

layers. freeze i->hl: Freeze & thaw layers
thaw hl-»h2; /*train weights 132%/ Train weights 12

train techniques songra maxtimes 10000 maxdters 10000;

rreeze hl->hs;
Freeze & thaw layers
thaw h2-»h3: /*train the thirs layezr®/ v
Train weights 233

train technigque= congra maxtime= 10000 maxiter= 1000

/* BETRATN ALL LAYERS SIMULTANEQUSLY */ Thaw all layers
thaw i-=hl: =

o hlooha Train all layers
thaw hZ-*h3;

train technigques songra maxtimes 10000 maxiters 1000;

*code file= '';/* ENTER SCORE CODE FILE FATH - SAME AS LINE 412 */

score cut=HmEQ out  cutfit=HmEq fit; Scoring: in and out
score datamHmEq home egquity Use outsBmEqg grideout:
title 'complex MLP '

Figure 32



Since an interested
reader can run this
code, some output
will be skipped and

final results will be isclassification Table ~ How well
shown. Of the 1189 did we do?
defaulters on the he FREQ Procedure
loan PROC Neural
fg’;t'f'eo' 309, or Frequency Table of F_BAD by |_BAD
0.
fishess |_BAD(Into: BAD)

Importantly, No -
alternative Col Pct F_BAD{From: BAD) ] 1| Total
architectures were 0 4771 0| 4T
explored and the B005| 0.00| 8005
naively created node 10000 000
still correctly 8443| 0.00
classified 85% of the
people. 8801 309

47T 518
This example would 7401 2599
be a good starting 15.57 | 100.00
point for a reader 5651 109
wishing to play with 9482 518
neural networks : :
Figure 33

SUMMARY:

SAS PROC Neural is a very powerful modeling tool and analysts should consider some study of Deep Neural
Networks.
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The appendix has three sections:
1) Code for the separate three groups example (the “rings” example)

2) Code for the predict delinquency example

3) All PowerPoint slides for the back propagation

1) code for the separate three groups example (the “rings” example)

Data Rings;
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infile datalines truncover firstobs
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28 9 0

run;

PROC DMDB batch data=Rings
out=DMDB_Rings
dmdbcat=DMDB_CatRings;
var Horiz vert ;
class Class_of_Y;
target Class_of Y;

run;

proc catalog catalog=work.DMDB_CatRings;
contents;
run;quit;

proc SGPlot data=Rings;

PROC SGPLOT DATA = Rings;

Scatter X = horiz Y = vert

/group=Class_of _Y;

YAXIS LABEL = 'Some equal interval variable' ;

XAXIS LABEL = 'Some Other equal interval variable';

TITLE 'Plot of the Circles (Rings) Training Data’;

INSET 'No Linear Boundary Exists'/ POSITION = TOPRIGHT BORDER;
RUN;

/*PROC GPlot data=Rings;*/

/* plot Vert*Horiz=Class_of Y /haxis=axisl vaxis=axis2;*/

/* symbol c=black i=none v=dot;*/

/* symbol2 c=red i=none v=square;*/

/* symbol3 c=green i=none v=triangle;*/

/* axisl c=black width=2.5 order=(0 to 30 by 5);*/

/* axis2 c=black width=2.5 minor=none order=(0 to 20 by 2);*/
/* title 'Plot of the Circles (Rings) Training Data';*/

[*run;quit;*/

PROC Neural data=Rings
dmdbcat=DMDB_CatRings
random=789;

input HORIZ VERT / level=interval id=i;
target Class of Y /id=o level=nominal;
hidden 3 /id=h;

prelim 5;

train;

score out=out outfit=fit;

score data=Rings out=gridout;

title 'MLP with 3 Hidden Units";

run;

proc print data=fit noobs label;
var _aic_ _ase__max_ _rfpe_ _misc_ _wrong_;
where _name_ = 'OVERALL';
title2 'Fits Statistics for the Training Data Set';
run;

proc freq data=out;
tables f_Class_of_Y*i_Class_of_Y;
title2 'Misclassification Table';



run;

2) code for the predict delinquency example

titte "Home Equity and Defaults";

libname DeepL "E:\___ Conferences_2016\dATA_2_ USE";
options nocenter;

ods listing;

proc contents data=DeepL.HmEq_home_equity varnum;
run;

proc print data=DeepL.HmEq_home_equity (obs=10);
run;

DATA HmEqg_home_equity_Use;
SET DeepL.HmEqQ_home_equity;
RUN;QUIT;

PROC DMDB batch data=HmMEq_home_equity_Use
out=DMDB_HmE(q
dmdbcat=DMDB_Cat_HmEQq;
var /*bad*/ LOAN MORTDUE VALUE /*REASON JOB*/ YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC;
class bad Job Reason;
target bad;
run;

*** TRAIN 3 LAYER AUTOENCODER;

*two kinds of statements - actions and options;

options fullstimer;

title "3 layer Neural Network";

PROC Neural data=HmEq_home_equity_Use
dmdbcat=DMDB_Cat_HmEq

graph;
performance compile details cpucount=4 threads= yes; /* ENTER VALUE FOR CPU COUNT */
*nloptions Maxlter=10000; /* DO NOT EXCEED NUMBER OF PHYSICAL CORES

*/

/* DEFAULTS: ACT= TANH COMBINE= LINEAR */

/* IDS ARE USED AS LAYER INDICATORS - SEE FIGURE 6 */

/* INPUTS AND TARGETS SHOULD BE STANDARDIZED */

/*we have 13 variables, so | will recude the number of nodes down from the numbers in the recognize

numbers example*/

archi MLP hidden= 3;

hidden 36 / id= h1;

hidden 24 / id= h2;

hidden 2 / id= h3 act= linear;

input LOAN MORTDUE VALUE /*REASON JOB* YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC

/id=i level= int std= std;

target bad / act= logistic id=t level= ordinal ;

/* BEFORE PRELIMINARY TRAINING WEIGHTS WILL BE RANDOM */

initial random= 123;

prelim 10 preiter= 10;

/* TRAIN LAYERS SEPARATELY */

[*freeze i->h1*/ [*train the first layer*/

freeze h1->h2;

freeze h2->h3;

train technique= congra maxtime= 10000 maxiter= 10000;

freeze i->h1;
thaw h1->h2; /*train the second layer*/
train technique= congra maxtime= 10000 maxiter= 10000;



freeze h1->h2;
thaw h2->h3; /*train the thirs layer*/
train technique= congra maxtime= 10000 maxiter= 10000;

/* RETRAIN ALL LAYERS SIMULTANEQUSLY */
thaw i->h1;

thaw h1->h2;

thaw h2->h3;

train technique= congra maxtime= 10000 maxiter= 1000;
*code file="; /* ENTER SCORE CODE FILE PATH - SAME AS LINE 412 */

score out=HmMEQ_out outfit=HMEq_fit;

score data=HMEq_home_equity_Use out=HmEq_gridout;
title ‘complex MLP *;

run;

proc print data=HmEq_fit noobs label;
var _aic_ _ase__max_ _rfpe_ _misc_ _wrong_;
where _name_ = 'OVERALL';
title2 '3 layer Fits Statistics for the Training Data Set';
run;quit;

proc freq data=HmEQ_out;
tables f_bad*i_bad;

title2 '3 LAYER Misclassification Table’;
run;

3) all PowerPoint slides for the back propagation

Theory: MNotation

L S Hidden Node Top - output Output Node Top - output
HNT-out ONT-out

Input

Node Top - | Hidden Node Top - input  output Node Top - f Binary
input HNT-in input ONT-in Y with
INT-out [

target

—.02356

e Lk




Theory: HNotation

LS00 Hidden Node Top - output Output Node Top - output
HNT-out ONT-out

Input
Node Top - | Hidden Node Top - input & output Node Top - Binary

input HNT-in input ONT-In / Y with

INT-out targ‘t
values

Forward Propagation

Forward Prop is simple

the transform inside the node is 1;'{1 +e-¥) = 1{(1 + e —im)

(.05.15) + (.1%.20) + (1°.35) = .3775 1/ (1 + exp(-.3775))

Error total=.2748 + .02356 = .298371




Backward Propagation




Backward Propagation

after going through the transform,

dEtotal  dEtotal ﬂﬂNT:mr dONTin
We need to compute *
three thil'lﬂﬁ 9 ﬂWS ﬂﬂHTGHE aﬂHTiﬂ ﬂWE

11 = .05 | W1.15 W5 .40 Ya

1.1058 ,7514 (.01-.7514)2
=.2748

W2 .20 Lﬂ W6 .45

12 = .10 | w3 .25
.5969

roet b .ﬁ S pos
W5 & B2: 160

AEtotal

1 1 .
Etotal = E* {target4ONT — ONTout) *+ i* {target40ONE — ONBout) ? 1: FONTout

dEtatal
AONTout
dEtotal
AONTout

1
2= 5 {(targetdONT — ONTout) *1e —1+ 0

—1+ (target4ONT — ONTout) 21 = —(.01 — 75136507) 1= 74136507

e 40 =

7414 1
11059 ,7514 (.01-.7514)2
=,2748



_d0Nout

2:
the transform is: 1,?'(1 +e-%) the derivitive is = x (1 — x) dONTIn

dONTout _

FonTin = ONTout(1 — ONTout) = 75136507(1 —.75136507) = 186815602

ONTin = W5 =« HNTout + W6 + HNBout + B2+ 1 = 11059 AONTin

#3 AONTin/dW5 = 1+« HNTout + W51 + 0+ 0 = HNTout = 059327 : dw5

dEtotal _  JEtotal *BGNIJHE *BGNTIH
aws  A0ONTout SONTn dws

= 74136507 ».186815602 » 0.59327= 0.082167.

Remember

dEtaral
dws

Y
(.01-.7514)2




dEtotal
dws

= =(0ONTtarget — ONTout) + ONTout™(1 - ONTout) * HNTout

&o=delta = —(ONTtarget — ONTout) + ONTout*(1 - ONTout)

AE i
_OETRGt _ A = W5 — ( LearnRate + ———)
dws aws

WSnew=.4- (.5 *.082167041) = .35891648




Backward Propagation

after going through the transform,

dEtotal  OFEtotal d0Nout GONTin
We need to compute =

= * *
three things dwé dONTout dONTn dwi

11 =.05W1.15 m L1868 | 7414 1%
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W2 .20

12 = .10 | w3 .25
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Etotal ! (t t4ONT — ONTout) 2 1 (t {4ONE — ONBour)® | 1- dEtotal
_= —% . ok _ ‘
- R M o JONTout

FONTout — 24 3 # (target4ONT — ONTout) 140 Same as W5H
dEtotal

—1+ (target4ONT — ONTout) *~1= —(.01 —.75136507) ' = 74136507

dONTout



_d0Nout
" A0ONTIn

the transform is: lf{l fe-x) the devivitive is = x (1 — x) Same as W5

SONTowE
dONTIn

= ONTout{1l — ONTout) = 751365071 —.75136507) = 186815602

ONTin = Wi+ HNTout + Wo = HNBout + B2 = 1 = 1.1059

GONTin
#3 JONTin/W6 =1+ HNBout * W6 ™' + 0 + 0 = HNBout = 0.59688437 |3 5=
dEtotal _ OdEtotal dONout JONTin

awé _ dONTout  dONTn = awe Same
=.74136507 ».186815602 + .0.596884378259767= 0.08267. as

Remember

dEtaral
A6




dEtotal

s = =(0ONTtarget — ONTout) + ONTout™(1 - ONTout) * HNBout

&o=delta = —(ONTtarget — ONTout) + ONTout*(1 - ONTout)

: . dEtoral
= W6t —( LearnRate + ows

dEroral _
dut




Backward Propagation

after going through the transform,

dEtotal  dEtotal ﬂﬂNﬂfur dONTin
We need to compute

*
three thil'lﬂﬁ 9 ﬂw? ﬂﬂHTqu aﬂNTﬂ ﬂW?

11 = .05 W1.15 m L1868 | JT414 1%

1.1058 ,7514 (.01-.7514)2

=.2748
W2 .20

12 = .10 | w3 .25
.5969

roet b .ﬁ S pos
W7 G B2: 160

1: dEtatal
T AONBout

Etotal

1 1
= 3 + (targetdONT — ONTout) * + 3 + (target+ON B — ONBout) ?

dEtoral
AONBout -
dEtatal
dON Bout

1
* 3 # (targetdONE — ONFour) * '+ —1 +0

= —1+ (target4ONE — ONBout) -1 = —(,00 — 7720284 ) 1= — 21707

WS 40 =

7414
11059 7514 (f01-.7514)%

801 2748

Error ihai= 205971

2171 14
5969 1.2249 | 7729 ( g9. 7729)2

Eﬁ' f- ‘ﬁ Aoy | =.02356
W7 B2: 1.6

10| ws .25




the transform is: 11.-"(1_'_ e %) the dertvitive iz = x (1 — x)

JONBout _
AONEin

ONBin= W7 = ANTout + Wa =« HNBout + B2+ 1 = 1.2243

#3 AONBin/dWT = 1+ HNTout + W71 + 0+ 0 = HNTout = 059327

dEtotal _  JEtotal *BGNIJHE *BGNTIH
aw?  A0ONTout AONTin  dw?

Remember

dEtomal _

oy — 21707+ 17751 » .0.59327= 0.082167.

dONBout
" ONBin

= ONBout(1 — ONBout) = .772928(1 — .772928) = 17551

) dONBin
awd




dEtotal

P = =(0ONTtarget — ONTout) + ONTout™(1 - ONTout) * HNTout

&o=delta = —(ONTtarget — ONTout) + ONTout*(1 - ONTout)

dEroral _ _ N dEtotal
oy = = W7 —( Lear nRate*—aw?




Backward Propagation

after going through the transform,

dEtotal dEtotal A0ONBout G0NBin
We need to compute = % *

11 = .05 W1.15 m L1868 | JT414 1%

A77E | 5833 11059 ,7514 {..I:I;‘LE*M}!

12 = .10 | w3 .25
5 |.5969

r‘ﬁ, 382 ﬁ

1 , 1 ) I: dEtatal
Ftotal = 2 * (targetdONT — ONTout) * + 2 + (targetdONE — ONBout)  AONBout
Itotal 2 ! it t40ONE — ONBout) 271+ -1+ 0
_ = ® — o — ® —
A0NFout g " Large o W7

dEtotal
dON Bout

= —1+(targetdONE — ONBout) 2 ~1= —(.99 — 7729284 ) 1= —.21707

=.02356




EIﬂGHEotet
the transform is: 1,?'(1 + e-x) | the derivitive is = x (1 — x) 8ONBin

Same as
W7

JONEOUL _ N Bout(1 — ONBout) = .772928(1 — 772028) = 17551

JONEin

ONBin = W7+ HNTout + W8 + HNFout + B2+ 1 = 1.2243 3: dONBin
- = .59327 w8

#3 AONBin/IWE =1+~ HNBout =Wa 1™ + 04+ 0 = HNBout

Remember dEtotal _ dEtotal . 0N ot . JONTIn Same as
aws  A0ONTout AONTin  dwh Wi

E-lEmmJ
dwa

= 21707 + . 17751 + .0.59327= 0.082167.

wi s | s .40 11000

q 11000
W2 .20 W6 .45




dEtotal

Fs —=(ONTtarget — ONTout) + ONTout*(1 - ONTout) * HNTout

&o=delta = —(ONTtarget — ONTout) + ONTout*(1 - ONTout)

dEtoral

_dEtotal _ _ n = W8 — ( LearnRate + ———

gl

Weénew=.55- (.5 *-.0226) = .56137

—.02358




ﬂEtumI dEtotal &HNTnut dHNTIn
E
dwl ~ dH NTnui!: dHNTIn dwl

dEtotal _ JE ONT . dE ONB
JHNTout  dHNTout AHNTout




JE ONT
AHNTout

JE ONE

JE ONT . JONTIn
dONTin dHNTout

JEONB  dONBin

.055399425=
(.18615602*.74136507) * .40

{.1?551 F2171)* B0 =

AHNTout  dONBin OHNBout . 019049119
.241300700 055399425 -.0190491 1%
= .59326999* .036350306

868 | JT414
H085""75 .01-.7514)2

ho1 =-2748

rror total=.298371

m"' . 17551 g1
5969 1.2249 | .7729 [. 7729)2

",ﬁ j,_; Lﬁ Mgy | =.02356
W1 G 82 1,00

= .05|W1.15 2413 .0364
3775 | 5033

A0 | w3 .25

AHNTIn
y 311
df tt:-tai df total ﬂHNTﬂut* dHNTin
dW1 ~ dHNTout @HNTin d Wl

.000438568= (.036350306*.244360709) *.05

.05 W1.15 2443 .0364 WaEAC L1868 | T414 14
SATTH |.=nn JAURE TS ull -T"“F

801 =.2748

Error total=.298371

m_' n 1 17551 2171

Eﬁ' 1 jf_-. ‘ﬁ ﬁ 99 =.02356
Wi I 2 160

W1 NEW
=.16 - (.58 * .000438568)
=.149780716

= .05

10| wa .25




ﬂEmmI dEtotal ﬂHNTnut*ﬂHHTin
dw2 ~ dHNTout dHNTin dw2

dEtotal JdE ONT dE ONE
= E
dHNTout  dHNTout JGHNTout




JE ONT
AHNTout

JEONT dONTin |,.055399425=
JONTIn® aHNTout || (-18615602*.74136507) * .40

JdE ONE dE G”'-.IE dONBin {.1?551 *..2171)* .50 =
AHNTout  dONBin OHNBout - 019049119

.241300700 .055399425 -.0190491 1%
= .59326999"*(1-. .036350306

05| W15 2413 .0364 Wasdo L.iscs | 7414
AaTTS |.=n“ AUad L F5 ull -\-TE"‘F

‘}f_.;. ..2745

L01

Error total=.298371
7 a

.10 | w3 .25 m"' « 17551 1

.3825 1.2249 7729 [' TT“F
st )

l.'.ﬁ > lgg =.02356
w2 <D o2 1°.60

W2 .20




W2 NEW
a =.20-(.5 * .000877135)
dE total  dF total dHNTout dHNTin =0.1995614325

aW2 _ dHNTout GHNTin = a W2




dEtatal
dwg

&o=delta = —(ONTtarget — ONTout) + ONTout*(1 - ONTout)

= —(ONTtarget — ONTout) + ONTout™(1 - ONTout) * HNTout

dEroral _ . & _ _ . dErotal
roral il HMTout = W8 {Lemnﬁater—aws )]

W8new=.55- (.5 *-.0226) = .56137

=.02356

64 8 | 7414 %

7514 (.01-.7514)2

| 593 =748

=.02356




JE ONT _ OE ONT | d0NTin | .062104307=
AHNTout — dONTin = dHNTout J| (-18615602*.74136507)* .45

JE ONB  JEONB  JONRBin (17551 * -.2171)* .55 =
= *
AHNTout  J0ONBin OHNBout -.020956772

.240613491 062104307 -. ﬂ2ﬂ955?¥2
. . = 0.041147535

.2413 .0364 : . 1868 | .7414 4
arrs |, 11089 7514 (.01-.7514)?

dHNTin =W1+.05+W2=+.10

SHNTin _ s W3 NEW
3 W1

=.25 - (.5 * 0.00049503)
dE total  dE total ﬂHNTﬂut dHNTin =, 0,.2497525

dwl _ dHNTout @HNTin _awl

.2406 .0411 wz bk
.3925 | 5969

=.02356




ﬂEmmI dEtotal ﬂHNEaur*ﬂHHBin
dwd ~ JHNBout JHNBin dwd

-

dEtotal JdE ONT dE ONE
= Ed
dHNBout  dHNBout JdHNBout

W1.16 2413 .0364 W5 .40

= %‘“’"




OE ONT _ JEONT 0ONTin [.062104307=
AHNTout — JONTin = @HNToutr f| (-18615602%.74136507)* .45

JEONB _ JEONB 0ONBin ||-.020956772=
dHNTout  JONBin OHNBout f| (-17551 * -.2171) * .55

.240613491 062104307 -. 020956772
= 0.041147535

.3925 | 5069

e -




dHNTIn = W1+.05+W2=+.10

W4 NEW
r =.30 - (.5 * 0.00099006)
ﬂE total 4 total ﬂHNTaut dHNTin =, 0.29950497

aw4 _ dHNTout @HNTin = a W4

W1.16 2413 .0364 4 .
11089

%m
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