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ABSTRACT:  

Recent advances in algorithms and hardware (the GPU chip) have made it possible to build neural nets that are both 
deeper and wider than had been practical in the past. This paper explores the theory, and a bit of the practice, 
associated with the building of deep neural networks in SAS Enterprise Miner. 

INTRODUCTION:  

Neural networks got 
that name because 
of their similarity to 
the way neurons 
work in the human 
body. Any web 
research session on 
this subject returns 
mentions of neurons, 
so a small anatomy 
lesson might be 
worthwhile.   
 
A cell is not a piece 
of undifferentiated 
jelly. Cells have 
structure and parts of 
cells have specific 
functions.    
 
The cell has a 
nucleus that contains 
the DNA and parts 
that connect the cell 
body to other cells. 

 
Figure 1  

Dendrites are long stringy parts of the cell to take inputs.   Axons send outputs to other cells. Your body is an 
incredibly deep neural network and one of your nerve cells can have hundreds of thousands of connections to other 
cells.  

An input to the cell, maybe the feeling of a touch or sensing of a color in your eyes, comes in through a dendrite. 
Cells have many dendrites and can receive many simultaneous inputs.  The individual inputs are summed, and 
“summed” is used in the same way that a mathematician would use the word, in a specialized part of the cell located 
adjacent to the start of the Axon. This specialized part of the cell, called the Axon Hilllock, sums the different inputs 
and if the inputs exceeds some threshold the Axon Hillock sends an electrical signal down the Axon towards other 
cells (the cell “fires”).  

At the end of the Axon, the electrical signal is converted into a chemical signal that leaves the cell.  A chemical signal 
bridges the gaps (the synapses) to other cells.  

The important things to recognize are: 1) the huge numbers of connections between nerve cells and 2) the function of 
the Axon Hillock.  It’s job is to sum the different inputs, some of which might increase the chance of sending out a 
signal and some of which might decrease the chance of sending out a signal, and then to decide if it should send an 
electrical discharge down the Axon. 



Figure 2 shows a 
small neural net but 
the characteristics of 
the small neural net 
are present in larger 
nets as well. 
 
Nodes to the left are 
sometimes called 
“early” nodes.  
 
A neural net can 
predict either binary 
or interval data and 
this net is trying to 
predict someone’s 
weight from their sex, 
age and height.   
 
A network has three 
types of nodes.   

 
Figure 2  

 Networks have input nodes and there are three nodes in this input layer. Networks have internal (often called hidden) 
nodes and layers. This net has two hidden/internal layers.  The first layer has three nodes and the second layer has 
two nodes. Networks have an output layer and this network has one node in the output layer. 

The network in figure 2 is a feedforward node. Each node in a layer to the left is connected to every node in the layer 
immediately to its right. There are no connections backwards between nodes, so no arrows point to the left. Finally 
there are no connections between nodes in the same layer.  

Inside each node is a function (represented by the letter F in the circles).  These functions are referred to as 
activation functions, transfer functions or simply transforms. The functions are usually nonlinear and common ones 
are linear, logistic, hyperbolic tangent and Gaussian. The fact that these transfer functions are usually non-linear 
makes the whole neural network non-linear.  A neural network has the ability to separate groups (and that is what 
predicting a binary Y is doing) with a boundary that is very curved and irregular. 

The basic process is to take the values of a person’s sex, age and height and enter them into the input nodes. The 
input variables are often standardized to remove the effects of different measurement units.  The values of sex, age 
and height are multiplied by the weights (the red Ws) and the result is passed on to the internal nodes.  Each internal 
node receives many inputs.  Some people think of neural network weights as being similar to the beta coefficients in 
a regression.  Neural net weights, like regression beta values, are measures of how much impact an X variable has 
on the Y variable. Arrows indicate how values are combined. At the right side of the network, the sum of weighted 
inputs (after going through all the nodes) is compared to a known Y value and an error is calculated. The back 
propagation algorithm then takes the derivative of the error with respect to each of the weights and uses that 
derivative to adjust the weights to produce a smaller error. 

Think of each person’s sex, age and height entering this network - the three variables enter simultaneously - one 
person at a time.  The weights are, for the first person read, set to random numbers and they produces large errors.  
After each observation is processed, the weights are adjusted to reduce the error and after many (often several 
thousands) subjects are processed, the weights can predict the Y value with small error. A second pass is needed, 
using the final weights, to score all the observations. 

If a reader looks at the top node in the first internal layer s/he can see that it has inputs from sex, age and height as 
well as from a one (coming from a yellow box).  The one is called a bias term and it is used to adjust the summed 
values from the input node so that the result, after adding in the weighed bias, has a value that does not “overload” 
the transform function.  Overloading is most easily explained by thinking of the activation function as being a 



Gaussian transform – a bell shaped transform.  The input to the activation function is the Z value (the summed 
weighted inputs from previous nodes) for the Gaussian and the output of the transform is the height of the bell above 
that value of Z.  If Z is +3, the transform returns a value close to zero. If Z is +8, the transform also returns a value 
close to zero.  After a Z value exceeds a certain absolute value, the transform returns, for practical purposes, the 
same value and is both “overloaded” and no longer sensitive to changes in Z.  The bias is used to “move” the value of 
Z back to a value where the transform function is more sensitive to changes in Z.     

Inside the node, the inputs are summed and then pushed through the function in the middle of the node to produce 
an output value for the node. I tend to think of each node as holding two numbers: an input number and an output 
number. An input number is the weighted sum of all of the values coming in from the left and the weighted bias. An 
output value is the one number that is a result of applying the transform function (also called activation function) to 
the summed weighted input values (the input number). 

In early research, the activation functions were often just step functions. If the summed weighted input values was not 
above a certain level (a cutoff number), no value (or maybe a zero) was passed on to nodes to the right. Now the 
nodes use smooth S shaped functions (or maybe bell-shaped) and they always pass on some value to nodes to the 
right – though the value may be small. 

Given enough nodes, and layers, you can model any data set to any desired level of accuracy – though it might take 
a very long time if the data set is large. 

If you feed, into the network, an X variable that has no predictive power (e.g.  a code for “blue eyes” vs “not blue 
eyes” in our problem of predicting weight) the neural net will eventually assign weights of zero to eye color. If you 
have enough data, and enough time to wait for the algorithm to run, a neural net will remove non-predicting variables 
by setting their weights to zero. However including a lot of silly variables as inputs will make the neural net run longer 
and possibly increase the chance of it finding a local Optima. 

 

Figure three shows 
some of the 
activation functions 
that researchers use. 
 
Linear is often used 
to connect the last 
hidden layer to the 
output layer. 
 
Hyperbolic tangent 
and Gaussian 
activations are also 
commonly used in 
other parts of the 
network. 

 
Figure 3  

 



Figure 4 facilitates a 
discussion of why 
non-linear functions 
are so commonly 
used. 
 
Biologists think that 
frogs’ brains contain 
two neural networks 
to help it find flies to 
eat.   
 
One network 
matches the size of 
the object to the size 
of an ideal fly.  The 
other network 
matches the “flying 
behavior” to that of 
an ideal fly.   

 
Figure 4  

 

This paper will next discusses how a frog might use a Gaussian function to evaluate several potential meals.  The 
choices are: a small fly (red border and arrow), a large fly (blue border and arrow), a bird (green border and arrow) 
and a moose (blue border and arrow).  The activation functions are mound shaped and the X value (horizontal value) 
generated by each object are “object distance from ideal”.  Close to the ideal points, the function returns a large value 
(it “fires”).  There is a cut-off value, shown as a horizontal line on the function, at which point the frog decides if 
“eat=True” or “eat=False” (or “activate” vs “not activate”, “fire” vs “not fire”). 

For the small fly, both the size and flying behavior are close to the ideal (see red arrows).  Both networks return a 
large, “above the cut-off”, value and “lunch is served”.  For the large fly, the size is a bit off-putting, though the flying 
behavior is close to the ideal (see blue arrows). Both networks return large values and the frog would likely attack.  
Because of the non-linear shape of the activation function, the networks are sensitive to small changes in the area of 
the “ideal”. 

For the bird, the size and behavior are both wrong (see green arrows) and the networks return two low values. For 
the moose, both the size and behavior are very wrong (see black arrows) and the networks return two low values.  
Because of the non-linear shape of the activation functions, the values returned for the bird and moose are similar.  
This makes sense because once the frog had decided that an object is “not lunch” it does not need to make fine 
evaluations of “how much not lunch” an object might be. Because of the shape of the non-linear activation function, 
the networks are NOT-sensitive to small changes far from the “ideal”. 

 



Figure 3 shows a 
larger net, though far 
from being a very 
large net these days. 
You can see there 
are lots of 
connections between 
lots of nodes. 
 
Neural nets are used 
in digital cameras to 
identify faces of 
people in a picture.  
 
Much exciting work is 
being done in visual 
recognition using 
neural networks. 

 
Figure 3  

 

There was, and to some extent still is, a criticism of deep neural nets that they are black boxes – that the results can 
be very good but no one can understand how the results are created. Recent research has made that statement less 
true.  Visual recognition research has allowed people to peek inside of neural nets and discover some exciting 
findings. This paper will discuss the internal processes of neural networks using pictures as the research issue. 

It seems that early layers in the net identify basic visual building blocks; like edges going from light-to-dark or dark-to-
light. Nodes farther to the right, in the net, can create higher level abstractions. Nodes in the middle of a neural net 
might identify parts of faces, like ears or noses. Nodes to the far right of the neural net can reconstruct faces and 
even recognize people. 

WAYS TO USE SAS TO CREATE NEURAL NETWORKS: 

SAS Enterprise Miner has four ways to do neural nets. 

DMNeural uses bucketed principal components as X variables and can predict a binary or interval Y.  HPNeural is 
designed as a high performance modeling tool. It will access memory across multiple cores and multiple computer 
nodes. It is not good for deep neural nets because it does not provide protection against the problem of vanishing or 
exploding gradients.  Auto  Neural conducts limited searches to help you find a better network architecture. It will try 
different numbers of layers and nodes as well as different activation functions. 
 

Neural network is the SAS work horse for doing neural nets and will process a deep neural network.  It provides the 
most control and most power of the choices that SAS provides. In order to do a deep neural net you must have 
Enterprise Miner installed, but it is easy to code a PROC Neural in the SAS display manager once you have installed 
Enterprise Miner. 

A NEURAL NET PROCESS: 

Good Neural Network results are the result of a multi-step (multi-node?) process and this paper will examine some of 
the other steps. Good neural network results come from a process and the work done before the neural net is 
important. Steps in a good process might be: 



Sampling can reduce the time to train a neural net and quick run times are always desirable. A researcher must 
balance the desire for quick run times with the fact that training a complex neural network to do a complex task 
requires lots of training data. To some extent, the quality of the results depends on the quality, and amount, of the 
training data. 

Programmers usually want to create partitioned data sets to allow SAS to automatically report on how well the neural 
net performs on data that is different from the training data.  

Consulting with business experts, and doing exploratory modeling, can reduce the number of variables that must be 
feed into the neural net. Often having fewer, and higher quality, input variables reduces training time and improves 
the results.  

An analyst might want to impute missing values or transform data before passing it into a neural net. Neural nets are 
highly non-– linear but transforms of the X variables can reduce training time.  

A programmer might want to remove outliers because they can reduce model accuracy.  

A neural net usually needs a data mining database (DMDB) catalog entry and a researcher might need to run PROC 
DMDB be before her neural net will run.  

Finally, in a neural net project, an analyst might also want to use other modeling nodes. It might be that the neural net 
is not the best technique for any particular use case. 

A “COCKTAIL PARTY” HISTORY OF NEURAL NETWORKS 
 
The seminal article for neural nets was written by Donald Hebb in 1949. He wrote, about neurons in the body and 
said, “when an Axon of cell A is near enough to excite cell B, and repeatedly or persistently takes part in firing it, 
some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells 
firing B, is increased.” Hebb was hypothesizing that “neurons that fire together wire together” and his article was the 
start of an explanation of how neurons are involved in learning and memory. 

Efforts to make computers work like human cells started soon after Hebb’s article. People were doing research using 
computers and electrical circuits in the 1950s. In 1963 Vapnik and Chervonenkis discovered the idea of the support 
vector machine.  

A book, in 1963, threw a major monkey wrench into neural net research. Papert and Minsk, in their book titled 
“Perceptrons”, demonstrated that a single node can classify successfully only if the Y classes in the data are linearly 
separable. They also proved that a single layer perceptron could not learn the logical XOR function. The inability to 
learn the XOR function was seen as a major, and general, flaw in neural networks and machine leaning.  Research 
interest plummeted. 

Interest was revived when, in 1974, Paul Werbos invented a training method called backward propagation.  This 
allowed for the creation of multi-node and multi-layer neural nets, though it ran into a problem called “the vanishing 
gradient” when applied to large nets. 

Restricted Boltzmann machines were invented by Smolensky in 1986 but became important in the early 2000s as 
Geoffry Hinton applied them to machine learning and the creation of Deep Neural Networks. 



In 1981 Hubel and 
Wiesel won a Nobel 
Prize for work on 
neuronal activities 
and vision. They had 
embedded an 
electrode in a cat 
brain and struggled 
to measure some 
sort of neuronal 
activity driven by 
pictures projected in 
front of the cat.  
 
Their first signal 
came when the cat 
saw a straight line as 
they changed slides. 

 
Figure 4  

It turns out that lines, or edges, might be important for both animal vision and for computer vision. In figure 3 we can 
see that early layers in the artificial neural net seem to be detecting lines of varying types. 

Research into vision is particularly amenable to discovering what’s going on in the inner layers of the neural net.  This 
paper will discuss some image recognition tasks, and logic, as a way of building familiarity with the neural net internal 
process. 

In figure 5 we get 
some idea of how 
pictures are coded.  
 
In this figure we see 
how early number 
recognition research 
was coded.  
 
Numbers were 
written on an input 
area that had been 
divided into a 9 x 9 
grid (one can obtain 
better results if 
coding is at a pixel 
level but this is hard 
to put on a ppt).   
 
Each cell was coded 
as to dark vs light. 

 
Figure 5  



The 81 cells were arranged in an 81 x 1 input vector and that input vector could be sent to a neural net with 81 input 
nodes. A little thought, and a peek at the number “2” in the middle of the slide, will lead a reader to recognize that 
numbers might need to be adjusted for position, and size, before being put into the neural net input vector. Above is a 
basic process for number recognition.  State-of-the-art vision technology, attempting to recognize people and objects 
in photographs, will input each pixel level - coded for multiple colors - and the input vector will be much larger. 

Early nodes in the 
network assemble 
the pixels into things 
like: vertical edges, 
horizontal edges (see 
right), angles or 
types of circles. Later 
nodes will assemble 
those edges into 
numbers.   
 
As a warning the 
neural net here 
would not be able to 
input an 81 variable 
input vector.  
 
With only four output 
nodes it would also 
be unable to correctly 
identify 10 digits. 

 
Figure 6  

 

The technologies 
used to recognize 
digits can be 
transferred into more 
complicated 
problems like 
recognizing faces.  
 
Parts of faces can be 
decomposed into 
simpler geometric 
shapes and the 
shapes built up into 
things like eyes and 
noses and mouths. 
 
Here we see partial 
circles being 
recognized in 
numbers and 
geometric shapes 
being “found” on 
photographs.  

 
Figure 7  



Some early software made histograms of “elements found” and compared the observed histogram frequency to some 
ideal histogram.  You can imagine that the software said, “ two cat ears, fur, two eyes with slits, one long wavy tail 
and about twenty-four whiskers matches the histogram frequency for cat”.  Some flexibility is required because, as 
you can see from these pictures of movie stars above, not all pictures show all the components associated with a 
type of animal. Both of these, professionally photographed, movie stars appear to have only one ear. 

ALGORITHMS USED IN DEEP NEURAL NETWORKS: 
A fairly deep dive into the algorithms involved in neural nets will help make some of the vocabulary more clear.  Some 
detailed, and worked out examples, will be very helpful to anyone studying this field. 

This example is taken from “A Step by Step Backpropagation Example” by Matt Mazur and can be found at:  
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example.  Full details are in the appendix of this 
paper. 

In figure 8 we see 
some of the notation 
that we will use later 
on in the paper and 
in the appendix.  
 
This is a small neural 
net with two input 
nodes, two hidden 
nodes and two 
output nodes.   
 
It performs a binary 
classification and will 
assign probabilities 
of being a “top” or 
“bottom”. 

 
Figure 8  

 

For the observation currently being processed, input node one has a value of .05 and input node two has a value of 
.10.  Please remember that nodes, in other layers, have an input value, an activation function and an output value 
and this leads to our naming convention.  HNT–in stands for hidden node top path input. HNT-out stands for hidden 
node top path output.  In this neural net, since the output nodes have an activation function, output nodes also 
contain two values.  

 B1 and B2, in the white ovals, are bias variables. The weights of the bias variables, in any real neural net, will also 
be trained to minimize the prediction error. We will not do that training in this example. 

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example


Figure 9 shows 
forward propagation. 
 
Initially all the 
weights are assigned 
randomly to numbers 
close to zero and the 
numbers in this slide 
are not 
unreasonable.  
 
Forward Prop starts 
by taking the input 
values and 
multiplying them by 
their weights and 
sending them onto 
the next node to the 
right.  

 
Figure 9  

 

The .3775 in HNT-in is the sum of the weighted inputs to that node. The calculation for the .3775 is shown in a yellow 
box in figure 9. The transform used inside all of these nodes is shown in the white box on figure 9 and is                        
1 / (1+ exp(-x)).  HNT-out is: 1 / (1+ exp(-.3775)). If the process is repeated for all of the other nodes a reader can re-
create the input values and output values of the hidden and output nodes.  

The observation also has an observed probability (this number is the result of a human rating and was contained in 
the training data file) of being a “top” of .01.  This observation has a probability of being a “bottom” of .99.  The 
predicted value for being a top is .7514 in the error component for top .2748. A similar process allows us to calculate 
the error associated with bottom.  If we sum the two errors we get the total error- for this observation and for these 
weight values.  

Now we now want to adjust the weights, in a very logical manner, so as to reduce the total error. 

A neural network used to start with randomly assigned, near-zero, weights.  The algorithm would read an observation 
and adjust the weights.   Prediction errors for the first several thousand observations would be large, but that was not 
important.  What was important was the final rules after thousands of “training cycles”.  In a second step, the whole 
data set could be “scored” by applying the derived rules.  Neural networks can be sensitive to starting weights and, 
now, there are several techniques that can replace, and improve on, a “random assignment of starting weights”,   

Adjusting the weights is called “training the neural network” and often uses a process called “back propagation” (AKA 
back prop).  Back propagation involves taking the partial derivatives of the error with respect to each of the weights. 
This involves using a calculus technique called the chain rule.  In the paper itself, we will not show all of the steps 
because several steps are repetitive. However, in the appendix we will paste, into the paper, all of the steps for a 
backward propagation so that an interested reader can reproduce the work.  It is hoped that the example in the 
appendix is a valuable part of the paper. 



The paper will start 
by training weight 
five (W5), the weight 
in the gold box. W5 
affects ONT-in and, 
through the 
activation function, it 
also affects ONT-out 
and thereby error.  
 
The white box in 
figure 10 shows the 
chain of derivatives 
we must 
follow/calculate.   
 
As you can see in 
the white box, we 
must calculate three 
terms. 

 
Figure 10  

 

 Figure 11 shows the 
calculation of the first 
term in the equation 
on Figure 10. We 
calculate the partial 
derivative of the total 
error with respect to 
ONT – out. 
 
The value of this 
term is .7414. 
 
Note that changing 
the value of W5 only 
affects one error 
term – the top error. 

 
Figure 11  

 
 



Figure 12 shows the 
calculation of the 
second term of the 
equation. In this step 
we move “our 
number” “back 
through” the 
transform – back 
through the activation 
function. 
 
 The second term of 
the equation has the 
value .1868. 

 
Figure 12  

 

Figure 13 shows the 
calculation of the 
third required term 
and, in the large 
white box, a reader 
sees the 
multiplication of the 
three terms together.   
 
This calculates that 
the partial derivative 
of the total error with 
respect to W5 is 
.082167. 
 
 

 
Figure 13  

 



Figure 14 shows the 
final adjustment to 
W5.  Our formula 
suggests that we 
should adjust W5 by 
.082167041 but this 
is likely to be too 
strong an 
adjustment.  
 
An adjustment this 
large is likely to 
cause the algorithm 
to overshoot the 
optimal and create a 
situation where the 
algorithm oscillates 
wildly. 

 
Figure 14  

   

To avoid oscillation, back prop applies what is called a learning factor – the .5 in the equation. Because we set the 
learning factor to .5, back prop applies just half of the adjustment that our formula suggests.  This smaller adjustment 
will result in the algorithm taking more steps to reach the optimal solution but software designers were willing to pay 
that price to decrease the chance of unstable oscillations.  Enterprise Miner allows a user to change the value of the 
learning parameter. 

Informally speaking, the .1868 and the .7414 are “characteristics” of the top output node.  If a formula requires a 
partial through output node top, these numbers do not need to be recalculated.  Therefore; when adjusting W6, most 
of the work is already done. Details of adjusting W6 are left to the appendix. 

The training for W7 and W8 proceeds with steps similar to those in the example shown for W5. Details of those 
adjustments are left to the appendix as well.  Please note that adjusting weights W5 to W10 would only affect one of 
the two error terms. 

Adjusting the weights for W1, W2, W3 and W4 will be a different process from that of adjusting the weights W5 to W8.  
The process of adjusting W1, W2, W3 and W4 will be more complicated than adjusting W5 to W8 because changing 
W1, W2, W3 or W4 affects both of the error terms. 



Figure 15 shows how 
changing W1 affects 
both of the error 
terms. The top white 
box shows that the 
partial derivative 
formula is very 
similar to the one we 
used before.  
 
We want to be sure 
to follow the yellow 
arrow downward to 
see how total error 
has two error 
components; top and 
bottom.   
 
The two error 
components will 
have make the 
resulting process a 
bit more complicated. 
It will have two parts. 

 
Figure 15  

 

The new process for adjusting weights will have two components – one that recognizes the effect of a weight on the 
top error and one that recognizes the effect of changing a weight on the bottom error. 

Figure 16 is intended 
to emphasize the 
three-step process 
that we must again 
follow as we adjust 
weights. 
 
Fortunately, much 
work has been done.   
 
Numbers that were 
described as 
“characteristics of the 
output nodes” will be 
used in these new 
formulas. 

 
Figure 16  

 



Figure 17 
emphasizes that 
there are two error 
terms IONT and 
ONB) that must be 
accounted for as we 
take the partial 
derivative through 
HNT.   
 
The number coming 
back to the output 
side of HNT is .0364.  
To take that partial 
derivative through 
the transform, in 
reverse order, results 
in the number 
.241300700 

 
Figure 17  

 

Figure 18 shows the 
three-part formula in 
mathematical terms 
(as partial 
derivatives) and also 
in numerical form. 
 
The goal is to adjust 
W1 in a manner that 
reduce the error and 
W1 could be 
adjusted by 
.00438568. 
 
However this might 
be too strong an 
adjustment. 

 
Figure 18  

 

 

Adjusting by .00438568 might lead to overcorrection and wild oscillations.  It is, generally, a better practice to take 
smaller steps toward the goal than to take large steps and overshoot the goal. Instead of adjusting by .00438568, 



Enterprise Miner will apply a learning factor (here .5) to reduce the size of the adjustment. In this example, the 
algorithm will only make half the suggested correction in hopes of creating a more stable approach to our goal. 

Note: this is a basic example of back prop and back prop is a hot area of research.  Some newer algorithms will 
monitor changes in error as learning progresses and, dynamically, adjust the learning rate.  These newer algorithms 
will “take bigger steps” towards the solution when possible.  

The calculations for adjusting W2 to W4 are similar to those shown above and are left to the appendix. 

RESTRICTED BOLTZMANN MACHINES (RBM): 

The fact that back proposition involves the chain rule, and many multiplications, limited the depth of neural networks 
for several years. As networks got deeper the back prop algorithm had to multiply more and more terms. Generally 
those terms were close to zero and the repeated multiplication of small terms would drive the the result of the 
calculation down close to machine accuracy.   

The formulas used above were calculating the gradient, the slope of the error shape, with respect to the different 
weights. When the formula drove the derivative of a weight to zero, the formula “told the algorithm” that there was no 
chance of improving the error by adjusting that weight.  Applying the above algorithm to deep nets made for long 
training times and unstable answers. Nets were limited in depth until the application of the Restricted Boltzmann 
machine (RBM) to neural networks. 

A Restricted Boltzmann Machine has the advantage of giving the network good starting weights that are not close to 
zero. A Restricted Boltzmann Machine avoids the problem of the vanishing gradient. 

A RBM breaks a 
Deep Neural 
Network into many 
two-layer networks 
see right).  
 
The first of the two 
layers is called the 
input layer and the 
second layer, the 
one on the right, is 
called the hidden 
layer. 
 
The two-layer 
network is trained so 
that the second layer 
simply reproduces 
the values in the first 
layer. 

 
Figure 19  

 



In figure 20 a reader 
can see the next step 
in the RBM. The 
process is to freeze 
weights between the 
input layer and 
hidden layer 1 and 
shift the RBM one 
layer to the right.  
 
The RBM tries to 
make the hidden 
layer 3 reproduce the 
values in the hidden 
layer 2. This process 
continues until all the 
layers have been 
trained 

 
Figure 20  

 

After all the layers 
have been trained, 
all their weights are 
unfrozen and the 
whole network is 
trained. 
 
Early algorithms 
randomly assigning 
starting weights 
close to zero and this 
exacerbated the 
“vanishing gradient 
problem”. 
 
Weights from the 
series of two-layer 
RBM training steps 
provide good, non-
zero starting weights 
for training of the 
network.   

 
Figure 21  

 

This technique avoids the vanishing gradient and has allowed researchers to use deeper and wider nets. 

EXAMPLE: NEURAL NETWORKS ON HARD TO SEPARATE CLUSTERS   



Figure 22 shows the 
one of the example 
problems that will be 
developed in this 
paper. 
 
This example is from 
SAS online 
documentation. 
 
A neural network will 
be used to separate 
these three groups. 
 
The process will be 
to run PROC Neural 
in the SAS Display 
Manager.  Proc 
Neural requires a 
DMDB catalog entry. 

 
Figure 22  

 

PROC DMDB 
creates a catalog 
entry containing 
metadata on the 
variables in the data 
set.  
 
Think of PROC 
DMDB is adding 
information to what 
one sees when 
running a PROC 
Contents. 
 
Proc Contents shows 
“data about the data”. 

 
Figure 24  

 



Figure 25 shows the 
PROC Neural code 
with explanations for 
the statements. 
 
SAS code to create 
this data set will be 
included in the 
appendix so an 
interested reader can 
conveniently run this 
example. 
 
In the paper, we will 
skip to output to 
show how well this 
neural net performed. 

 
Figure 25  

 

Figure 26 shows the 
results of the PROC 
Neural.  
 
There were no 
misclassifications.  
 
This is exciting 
performance on a 
highly non-linear 
data set. 

 
Figure 26  

 



PROC Neural 
creates output data 
sets and a 
programmer that 
wants to build a 
PROC Neural into a 
larger project must 
understand the 
output.  
 
The output from the 
PROC Neural will 
likely be input to 
some future steps.  

 
Figure 27  

 

As this figure 
suggests, interpreting 
the contents of 
output from PROC 
Neural can be 
difficult. 
 
E_ values depend on 
the method used in 
the Deep Neural 
Network. 
 
After much research, 
I have not been able 
to find a definition of 
U_. 
 

 
Figure 28  

 



Rings was the input 
data set and was not 
changed. 

 
Figure 29  

 

EXAMPLE 2: PREDICTING LOAD DEFAULTS 

This new example 
will try to predict loan 
defaults. This data 
set is shipped with 
SAS Enterprise 
Miner and an 
interested reader 
easily can run this 
code. 
 
To the right, please 
see the use of PROC 
DMDB to create a 
catalog entry for use 
by PROC Neural. 

 
Figure 30  

 



This PROC Neural 
call is fairly 
complicated and 
extends over two 
slides. The red boxes 
group similar types of 
commands.  
 
PROC Neural allows 
a one to specify the 
number of CPUs to 
which s/he has 
access and to allow 
multithreading. 
 
We are asking for 
three hidden layers 
Hidden layer1 has 36 
nodes.  Hidden layer 
2 has 24 nodes and 
hidden layer 3 has 
two nodes. 

 
Figure 31  

 

This figure shows the 
coding of the RBMs. 
Each of the red 
boxes is an RBM and 
run in a sequence.   
The boxes will freeze 
and un-freeze 
appropriate hidden 
layers. 

 
Figure 32  

 



Since an interested 
reader can run this 
code, some output 
will be skipped and 
final results will be 
shown. Of the 1189 
defaulters on the 
loan PROC Neural 
identified 309, or 
26%. 
 
Importantly, No 
alternative 
architectures were 
explored and the 
naively created node 
still correctly 
classified 85% of the 
people. 
 
This example would 
be a good starting 
point for a reader 
wishing to play with 
neural networks 

 
Figure 33  

 

SUMMARY:  
SAS PROC Neural is a very powerful modeling tool and analysts should consider some study of Deep Neural 
Networks. 
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***************** APPENDIX *************** 

The appendix has three sections:  
1) Code for the separate three groups example (the “rings” example) 

2) Code for the predict delinquency example  

3) All PowerPoint slides for the back propagation 

 

1) code for the separate three groups example (the “rings” example) 

Data Rings; 



infile datalines truncover firstobs=3; 
input @1 Horiz 2. @5 vert 2. @10 Class_of_Y 1.; 
datalines; 
Horiz Vert Class_of_Y 
1234567890 
 2   9   0 
 2  10   0 
 3   8   0 
 3   9   0 
 3  10   0 
 3  11   0 
 4   7   0 
 4   8   0 
 4   9   0 
 4  10   0 
 4  11   0 
 4  12   0 
 5   6   0 
 5   7   0 
 5   8   0 
 5   9   0 
 5  10   0 
 5  11   0 
 5  12   0 
 5  13   0 
 6   5   0 
 6   6   0 
 6   7   0 
 6  12   0 
 6  13   0 
 6  14   0 
 7   4   0 
 7   5   0 
 7   6   0 
 7  13   0 
 7  14   0 
 8   4   0 
 8   5   0 
 8  14   0 
 8  15   0 
 8   8   1 
 8   9   1 
 8  10   1 
 9   3   0 
 9   4   0 
 9  15   0 
 9   7   1 
 9   8   1 
 9   9   1 
 9  10   1 
 9  11   1 
10   3   0 
10   4   0 
10  15   0 
10  16   0 
10   6   1 
10   7   1 
10   8   1 
10   9   1 
10  10   1 
10  11   1 
10  12   1 



11   2   0 
11   3   0 
11  16   0 
11  17   0 
11   6   1 
11   7   1 
11  11   1 
11  12   1 
11  13   1 
12   2   0 
12   3   0 
12  16   0 
12  17   0 
12   4   1 
12   5   1 
12  12   1 
12  13   1 
12  14   1 
13   1   0 
13   2   0 
13  16   0 
13   4   1 
13  13   1 
13  14   1 
13   8   2 
13   9   2 
14   1   0 
14   2   0 
14  16   0 
14   4   1 
14  13   1 
14   7   2 
14   8   2 
14   9   2 
14  10   2 
15   1   0 
15   2   0 
15  16   0 
15   4   1 
15  13   1 
15  14   1 
15   8   2 
15   9   2 
16   2   0 
16   3   0 
16  16   0 
16  17   0 
16   4   1 
16   5   1 
16  12   1 
16  13   1 
16  14   1 
17   2   0 
17   3   0 
17  17   0 
17   6   1 
17   7   1 
17  11   1 
17  12   1 
17  13   1 
18   3   0 
18  15   0 



18  16   0 
18   6   1 
18   7   1 
18   8   1 
18  11   1 
18  12   1 
19   3   0 
19   4   0 
19  14   0 
19  15   0 
19   7   1 
19   8   1 
19   9   1 
19  10   1 
19  11   1 
20   3   0 
20   4   0 
20  15   0 
20  16   0 
20   8   1 
20   9   1 
20  10   1 
21   4   0 
21   6   0 
21  14   0 
21  15   0 
22   4   0 
22   5   0 
22  14   0 
23   6   0 
23   7   0 
23   9   0 
23  10   0 
23  12   0 
23  13   0 
24   4   0 
24   5   0 
24   6   0 
24  12   0 
24  13   0 
24  14   0 
25   6   0 
25   7   0 
25   8   0 
25  11   0 
25  12   0 
25  13   0 
26   6   0 
26   7   0 
26   8   0 
26   9   0 
26  10   0 
26  11   0 
26  12   0 
27   6   0 
27   7   0 
27   8   0 
27   9   0 
27  10   0 
27  11   0 
28   7   0 
28   8   0 



28   9   0 
; 
run; 
 
PROC DMDB batch data=Rings 
   out=DMDB_Rings 
   dmdbcat=DMDB_CatRings; 
   var Horiz vert  ; 
   class Class_of_Y; 
   target Class_of_Y; 
run; 
 
proc catalog catalog=work.DMDB_CatRings; 
contents; 
run;quit; 
 
 
 
proc SGPlot data=Rings; 
 
PROC SGPLOT DATA = Rings; 
  Scatter X = horiz Y = vert  
    /group=Class_of_Y; 
  YAXIS LABEL = 'Some equal interval variable' ; 
  XAXIS LABEL = 'Some Other equal interval variable'; 
  TITLE 'Plot of the Circles (Rings) Training Data'; 
  INSET 'No Linear Boundary Exists'/ POSITION = TOPRIGHT BORDER; 
RUN; 
 
 
/*PROC GPlot data=Rings;*/ 
/*  plot Vert*Horiz=Class_of_Y /haxis=axis1 vaxis=axis2;*/ 
/*  symbol c=black i=none v=dot;*/ 
/*  symbol2 c=red i=none v=square;*/ 
/*  symbol3 c=green i=none v=triangle;*/ 
/*  axis1 c=black width=2.5 order=(0 to 30 by 5);*/ 
/*  axis2 c=black width=2.5 minor=none order=(0 to 20 by 2);*/ 
/*  title 'Plot of the Circles (Rings) Training Data';*/ 
/*run;quit;*/ 
 
PROC Neural data=Rings 
 dmdbcat=DMDB_CatRings 
 random=789; 
 input HORIZ VERT  / level=interval id=i; 
 target Class_of_Y / id=o level=nominal; 
 hidden 3 / id=h; 
 prelim 5; 
 train; 
 score out=out    outfit=fit; 
 score data=Rings out=gridout; 
 title 'MLP with 3 Hidden Units'; 
run; 
 
proc print data=fit noobs label; 
  var _aic_ _ase_ _max_ _rfpe_ _misc_ _wrong_; 
  where _name_ = 'OVERALL'; 
  title2 'Fits Statistics for the Training Data Set'; 
run; 
 
proc freq data=out; 
 tables f_Class_of_Y*i_Class_of_Y; 
 title2 'Misclassification Table'; 



run; 
 

2) code for the predict delinquency example  

title "Home Equity and Defaults"; 
libname DeepL "E:\____Conferences_2016\dATA_2_USE"; 
options nocenter; 
ods listing; 
proc contents data=DeepL.HmEq_home_equity varnum; 
run; 
 
proc print data=DeepL.HmEq_home_equity (obs=10); 
run; 
 
DATA HmEq_home_equity_Use; 
 SET DeepL.HmEq_home_equity; 
 RUN;QUIT; 
 
PROC DMDB batch data=HmEq_home_equity_Use 
   out=DMDB_HmEq 
   dmdbcat=DMDB_Cat_HmEq; 
   var /*bad*/ LOAN MORTDUE VALUE /*REASON  JOB*/ YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC; 
   class bad Job Reason; 
   target bad; 
run; 

*** TRAIN 3 LAYER AUTOENCODER; 
*two kinds of statements - actions and options;  
options fullstimer; 
title "3 layer Neural Network"; 
PROC Neural data=HmEq_home_equity_Use 
    dmdbcat=DMDB_Cat_HmEq 
    graph; 
    performance compile details cpucount=4  threads= yes; /* ENTER VALUE FOR CPU COUNT */  
    *nloptions MaxIter=10000;                                                    /* DO NOT EXCEED NUMBER OF PHYSICAL CORES 
*/ 
    /* DEFAULTS: ACT= TANH COMBINE= LINEAR */ 
    /* IDS ARE USED AS LAYER INDICATORS - SEE FIGURE 6 */ 
    /* INPUTS AND TARGETS SHOULD BE STANDARDIZED */ 
 /*we have 13 variables,  so I will recude the number of nodes down from the numbers in the recognize 
numbers example*/ 
    archi MLP hidden= 3;  
    hidden 36 / id= h1;  
    hidden 24 / id= h2; 
    hidden 2 / id= h3 act= linear; 
    input LOAN MORTDUE VALUE  /*REASON   JOB*/  YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC 
         / id= i level= int std= std;  
    target bad / act= logistic id=t level= ordinal ; 
    /* BEFORE PRELIMINARY TRAINING WEIGHTS WILL BE RANDOM */ 
    initial random= 123;  
    prelim 10 preiter= 10;  
 
    /* TRAIN LAYERS SEPARATELY */ 
   /*freeze i->h1*/ /*train the first layer*/  
    freeze h1->h2;  
    freeze h2->h3;  
    train technique= congra maxtime= 10000 maxiter= 10000; 
 
    freeze i->h1;  
    thaw h1->h2;  /*train the second layer*/ 
    train technique= congra maxtime= 10000 maxiter= 10000; 
  



    freeze h1->h2;  
    thaw h2->h3;  /*train the thirs layer*/ 
    train technique= congra maxtime= 10000 maxiter= 10000; 
 
   
    /* RETRAIN ALL LAYERS SIMULTANEOUSLY */    
    thaw i->h1; 
    thaw h1->h2;  
    thaw h2->h3; 
  
    train technique= congra maxtime= 10000 maxiter= 1000; 
 
     *code file= '';     /* ENTER SCORE CODE FILE PATH - SAME AS LINE 412 */ 
 
 score out=HmEq_out    outfit=HmEq_fit; 
 score data=HmEq_home_equity_Use out=HmEq_gridout; 
 title 'complex MLP '; 
run; 
 
proc print data=HmEq_fit noobs label; 
  var _aic_ _ase_ _max_ _rfpe_ _misc_ _wrong_; 
  where _name_ = 'OVERALL'; 
  title2 '3 layer Fits Statistics for the Training Data Set'; 
run;quit; 
 
proc freq data=HmEq_out; 
 tables f_bad*i_bad; 
 title2 '3 LAYER Misclassification Table'; 
run; 

 

3) all PowerPoint slides for the back propagation 
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