Application of SAS®!
Enterprise Miner- in Credit Risk Analytics
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Credit Risk Analysis Overview

Credit Risk Analysis (CRA) is integral to every step in the credit lifecycle process,
from prospect and customer segmentation, through origination scorecards, to the
design and execution of account management and collection strategies, whether for
mortgages, personal loans and lines of credit, credit cards, educational loans, auto
loans, and other consumer finance vehicles.
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CRA is about identifying and mitigating risk
associated with financing credit product to
customers. Risk team quantify risk, monitor and
report risk of prospect or customer by
development of risk monitoring tool, scorecard
and models.

CRA guides us in taking decision on customer’s
associated risk for pricing as well credit
exposure decision associated with it.



Journey from DATA to DECISION
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In Credit Risk Analysis,

Team explore credit bureau data to
understand and gather information
about customers [Exploratory Data
Analysis]

Analyze raw data to synthesize the
knowledge and develop quantitative risk
tools [Develop Quantitative Tools]

Validate best tool by comparing results
in different time and scenarios. [Validate
& Compare |

Integrate tool into strategy for credit
decisions by evaluate best strategy
[Best Strategy Evaluation]

Credit Industry heavily relies on analyzing standard credit scoring and customer

provided information for credit decisions.



Exploratory Data Analysis (EDA)
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initial drivers of risk. SAS®
Enterprise Miner™ provides
several data exploration nodes
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v'Graph Explore node : explore data graphically to uncover patterns and trends.

v'Stat-Explore node: generates summary statistics and can examine variable distributions
and statistics. It contributes to the initial analysis before getting deep into causation analysis.

v'Multi-Plot node: explore data graphically to observe data distributions and to examine
relationships among the variables [i.e. By Bar graph or scatter plot].

v'Variable Selection: identifies initial input variables useful for predicting the target.

Note: These nodes eliminate the need to write many lines of code in PC SAS to accomplish the same results.



Exploratory Data Analysis — contd..

Sample Bureau Data*
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Let’s analyze a sample bureau data with
people demographics, payment history,
length of credit, type of delinquency... etc
where target™* is STATUS = ‘OK’ or ‘Bad
Debt’. We started exploring data by
generating descriptive statistics, bar charts,
scatter plots for variables as well as how
target is related to other variables.

* Data is for illustrative purposes only ** Target is term used for response variable.
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Exploratory Data Analysis — contd..
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In the exploration nodes of
Enterprise Miner~, visualization
tools are useful in graphically
representing the distributions
of target vs. other variables.



Develop Quantitative Tools
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In developing quantitative tools, SAS® Enterprise Miner~ provides us numerous tools &
techniques to identify top predictors .

v'Selection of final variables can be done through different approaches [i.e. Variable
Selection, CHAID Analysis or Regression selection procedure stepwise, forward or backward].
v'Variable Clustering is useful in identifying variables from groups of highly correlated
variables.

v'In the Risk Industry, quantitative tools are used in developing predictive models or
scorecard or strategies.



Develop Quantitative Tools contd..
CREDIT SCORE FACTORS
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The traditional form of a credit scoring model is a scorecard.
In Credit Risk Analysis, scorecard plays a key role in decision making.

Team uses different types of credit information to calculate the FICO score for the general
population.



Develop Quantitative Tools contd..
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SAS® Enterprise Miner~ development of scorecard takes following steps

v’ Careful selection of best attributes with high information values

v’ Binning of variables and then grouping bins variables [Interactive grouping node]
v Modeling of approved credit accounts (‘Accepts’) [Scorecard node]

v’ Building scorecard on accepts as well as inference performance of “rejects”
(reject Inference node).
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Validate & Compare

With SAS® Enterprise Miner™, it is
‘ possible to create, validate and compare
a variety of model types such as

I : ) g regression, scorecards, decision trees or
/ Regression

neural networks. When we evaluate
which model type is best suited for
achieving our goals, we consider criteria

’ Model \ h
ﬁnmparisnn such as

%ﬁeural Network * Parsimony (complexity)
* Integration efficiency
* Accuracy

The Score node functionality if

, \ Enterprise Miner™ facilitates scoring. It

&Decisiun Tree g also generates SAS codes for outside
validation.
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Validate & Compare contd..
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Model Comparison output provides model statistics to compare and assist in
decision making process.
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Best Strategy Evaluation

Portfolio and Risk
Management

In the final step of Credit Risk Analysis:

v" The Risk team compares and evaluates newly developed strategies/models
with existing strategies.

v Validate strategies in different scenarios

SAS ® Enterprise Miner™ offers number of benefits in best strategy evaluation
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SAS® Enterprise Miner~ — additional features

SASe Enterprise Miner™ is the SAS solution for data mining.

Easy handling of huge amount of data, no sampling required

Several nodes for customization and exploration of raw data for faster data analysis
Variety of model types such as scorecards, regression, decision trees or neural networks
Testing new ideas and experimenting with new modeling approaches

Specialize nodes to meet industry specific need and standard regulation

Provides required documents and graphs for governance review

Easy graphical representation of complex quantitative analysis for senior leaders

Scoring code in many programming languages for easy and fast technology
implementation
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Challenge of Credit Risk Industry

[ Business and Regulatory Requirements J
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It's a dynamic and continually evolving industry; it's sensitive to
macroeconomic environment, government regulation and risk appetite of
companies. CRA plays a great role in monitoring and predicting future risk
under regulatory environment.



Questions?

Minakshi Srivastava, minakshi.srivastava@bankofamerica.com
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