

1

Paper 1504-2014

The Power of the PROC FORMAT
Jonas V. Bilenas, Barclays UK&E RBB, Wilmington, DE

ABSTRACT
The FORMAT procedure in SAS® is a very powerful and productive tool, yet many beginning programmers rarely make
use of it. The FORMAT procedure provides a convenient way to do a table lookup in SAS. User-generated FORMATS
can be used to assign descriptive labels to data values, create new variables, and find unexpected values. PROC
FORMAT can also be used to generate data extracts and to merge data sets. This paper provides an introductory look at
PROC FORMAT for the beginning user and provides sample code that illustrates the power of PROC FORMAT in a
number of applications. Additional examples and applications of PROC FORMAT can be found in the SAS® Press book
titled “The Power of PROC FORMAT."

INTRODUCTION
Building a user defined FORMAT can be viewed as a table lookup where VALUES are mapped to LABELS. Let us look
at some table lookup examples.

Typical lookup tables use 1-to-1 or many-to-1 mappings. As an example of a 1-to-1 table lookup, we have a data set of 1
character credit approval decision codes. When we generate reports of approval rates, we wish to map decision code
values into literal labels. The 1-to-1 mapping is illustrated here:

 ‘a’ = ‘Approve’

 ‘d’ = ‘Decline’

If we have many approval codes and many decline codes, these can be mapped or assigned or grouped to the
appropriate label in a many-to-1 mapping. For example;

 ‘a1’, ’a2’, ’a4’ = ‘Approve’

 ‘d1’, ‘d6’ = ‘Decline’

In the next section, we will look at how we might generate table lookups in SAS. The first method relies on the DATA
step and the second approach will build the lookup using PROC FORMAT.

TABLE LOOKUP USING A DATA STEP
For this example, we will look at groupings of credit bureau risk scores. These scores are often used in credit decisions.
One such score has integer values from 370 to 870 with exception scores outside this range. Higher values of the score
relates to better credit quality and reduced risk.

We wish to run a frequency distribution on individuals with scores grouped into 3 classes; 370-670, 671-870, and un-
scored. This is an example of a many-to-1 mapping where we will need to group scores into 3 categories. A beginning
programmer would often handle this by creating another SAS data set where a new variable is generated to assign
membership into categories. This new data is then used in a PROC FREQ to generate the report. Here is some code
generated by the SAS programmer:

data stuff;

 set cb;

 if 370<= score <= 670 then group=’670-‘;

 else if 670 < score <= 870 then group=’671+’;

 else group=’unscored’;

run;

proc freq data=stuff;

 tables group;

run;

2

Results from the code are illustrated in output 1.

 Cumulative Cumulative

GROUP Frequency Percent Frequency Percent

671+ 623 10.7 623 10.7

670- 5170 89.2 5793 99.9

unsc 5 0.1 5798 100.0

Output 1. Output from PROC FREQ

The code did the job, but it required that a new DATASTEP be created and the label ‘unscored’ was truncated to ‘unsc’.

TABLE LOOKUP USING PROC FORMAT
Using a user defined FORMAT saves some processing time and resources. The same problem solved using PROC

FORMAT is illustrated here.

proc format;

 value score 370 - 670 = ‘670-‘

 670<- 870 = ‘671+’

 other = ‘unscored’

 ;

run;

proc freq data=cb;

 tables score;

 format score score.;

run;

Code returns output shown in Output 2.

 Cumulative Cumulative

 SCORE Frequency Percent Frequency Percent

--

670- 5170 89.2 5170 89.2

671+ 623 10.7 5793 99.9

unscored 5 0.1 5798 100.0

Output 2. Output using user defined FORMATS in PROC FREQ

Some observations to make:

1. Assignment of the FORMAT occurs in PROC FREQ with a FORMAT statement.

2. I end the format definition with the ‘;’ on a new line. This is just my preference but I find it easier to debug PROC
FORMAT code especially if I add more values to the FORMAT later on.

3. The ‘unscored’ label now appears without truncation.

Syntax rules for PROC FORMAT will be reviewed in a later section. Let’s look at another application of PROC FORMAT
to find unexpected values.

USING PROC FORMAT TO FIND UNEXPECTED VALUES
User defined formats can be used to list out unexpected values. If a range of values are not mapped in a PROC
FORMAT, the original values will be returned as labels. Here is an example:

proc format;

 value looky 370-870 = ‘370-870’

 ;

run;

proc freq data=cb;

 tables score;

 format score looky.;

run;

3

Output 3 shows results from the above code.

 Cumulative Cumulative

 SCORE Frequency Percent Frequency Percent

--

370-870 30320 96.0 30320 96.0

 9003 1264 4.0 31584 100.0

Output 3. Finding Unexpected Data Values

With the above example we run the risk of truncating the output of values if the values have a width larger than the width
of the FORMAT label. For this reason, it is better to use an embedded FORMAT as follows:

proc format;

 value looky 370-870 = ‘370-870’

 other = [best.]

 ;

run;

GENERATING NEW VARIABLES WITH PROC FORMAT
New variables can be assigned within a data step using user defined FORMATS. A nice feature of using FORMATS for
generating new variables is that the method can replace IF/THEN/ELSE code. By default, PROC FORMAT will not allow
1-to-many or many-to-many mapping. There are no checks for accidental 1-to-many or many-to-many mapping in
IF/THEN/ELSE code within a data step.

In this example we wish to assign a credit line based on a risk score range.

proc format;

 value stx low - < 160 = ‘1000’

 160 - 179 = ‘2500’

 180 - 199 = ‘5000’

 200 - 219 = ‘7500’

 220 - high = ‘9500’

 ;

run;

data scores;

 set bbu.scores;

 line = input(put(score,stx.),best12.);

run;

With the above code a new variable called LINE is generated from the call of the FORMAT STX in the PUT function.
PUT function will always return a character, so the INPUT function was used to convert the variable to numeric since we
required that the LINE variable be a numeric variable.

4

WHAT ABOUT A 2 DIMENSION TABLE LOOKUP?
Taking the last example, what if we wanted to offer different lines as a function of score for 20% of the records? Here is
sample code:

proc format;

 value use low - 0.8 = ‘stx’

 0.8 < - high = ‘sty’

 ;

 value stx low - < 160 = ‘1000’

 160 - 179 = ‘2500’

 180 - 199 = ‘5000’

 200 - 219 = ‘7500’

 220 - high = ‘9500’

 ;

 value sty low - < 160 = ‘1500’

 160 - 179 = ‘3200’

 180 - 199 = ‘6500’

 200 - 219 = ‘8000’

 220 - high = ‘10000’

 ;

run;

data scores;

 set bbu.scores;

 fmtuse = put(ranuni(83),use.);

 line = input(putn(score,fmtuse),best12.);

run;

Some comments about the code:

 I take a uniform random number and assign ‘stx’ 80% of the time and ‘sty’ 20% of the time as values to variable
FMTUSE using a PUT function.

 I use the PUTN function which assigns, as the second argument, the value of FMTUSE to be used as the FORMAT.
This will dynamically assign the format based upon values of the FMTUSE variable. Note that the second argument
in the PUTN function does not end in a dot since the second argument is not a FORMAT but a variable. For
character FORMATS use the PUTC function.

More examples of 2-dimensional and 3-dimensional table lookups using PROC FORMAT can be found in the SUGI31
paper by Perry Watts, “Using Database Principles to Optimize SAS® Format Construction from Tabular Data”.

USING PROC FORMAT TO EXTRACT DATA
User defined formats can be used to extract a subset of data from a larger DATASET. Here is an example.

proc format;

 value $key ‘06980’ = ‘Mail1’

 ‘06990’,’0699F’,’0699H’ = ‘Mail2’

 other = ‘NG’

 ;

run;

data stuff;

 set large.stuff;

 where put(seqnum,$key.) ne ‘NG’;

run;

Note that for this example we are generating a character FORMAT that will map character values. Character FORMATS
must start with a ‘$’.

Let’s review some syntax rules for setting up user defined FORMATS in the next sections.

SPECIFYING RANGES OF VALUES IN PROC FORMAT
Ranges of values can be specified in a number of ways and special keywords can be used in the expression of the
range.

1. VALUES can be single values or values separated by commas:

 ‘x’

 ‘a’, ‘b’, ‘c’

 1, 22, 43

5

2. Ranges (numeric or character) can include intervals such as:

 A – B. Interval includes both endpoints.

 A <- B. Interval includes higher endpoint.

 A - < B. Interval includes lower endpoint.

 A <- < B. Interval does not include either endpoint.

3. Ranges can be specified with special keywords:

 LOW, HIGH, OTHER, .,‘ ’

4. The LOW keyword does not format missing values for numeric formats. For character formats, LOW includes
missing values.

5. The OTHER keyword does include missing values unless accounted for with specification of missing values.

OTHER FORMAT REQUIREMENTS
 For SAS8 and earlier, format names must be 8 characters or less. For SAS9, the number of characters a format

name can have is 32. These lengths include the dollar sign required for character formats.

 FORMAT names cannot be identical to existing internal SAS format names.

 FORMAT names cannot end or begin with a number.

 Character FORMATS must begin with a “$”.

 INFORMATS can be created in PROC FORMAT with the INVALUE statement. This paper did not touch on the
steps to create user informats. To review the INVALUE statement of PROC FORMAT, refer to SAS documentation
and/or SAS PRESS book “The Power of PROC FORMAT” (2005, Bilenas).

USING PROC FORMAT FOR DATA MERGES
PROC FORMAT also offers a method of merging large data sets (up to a few million, depending on memory resources)
to very large (millions and millions) unsorted SAS data sets or flat files. The method first builds a user defined format
from a special data set. The requirements for this data set are that it must not have any duplicates in key fields and have
at least these variables:

 FMTNAME: name of format to create.

 TYPE: ‘C’ for character or ‘N’ for numeric.

 START: the value you want to format into a label. If you are specifying a range, START specifies the lower end of
the range and END specifies the upper end.

 LABEL: the label you wish to generate.

Once the data is generated, a FORMAT is generated from the data and then applied to match records from the larger
unsorted SAS data set or flat file. Here is an example of code applied to a large unsorted SAS data set.

proc sort data=small out=temp nodupkey force;

 by seqnum;

run;

data fmt (rename=(seqnum=start));

 retain fmtname ‘key’

 type ‘C’

 label ‘Y’;

 set temp end=eof;

 output;

 if eof then do;

 start =’ ‘;

 label = ‘N’;

 HLO = ’O’;

 output;

 End;

run;

proc format cntlin=fmt;

run;

data match;

 set bigfile;

 where put(seqnum,$key.)=’Y’;

run;

6

Some observations on above code:

 The sort of the small DATASET () was done to ensure no duplicates of the key variable, SEQNUM.

 In line we create the dataset that will be used by PROC FORMAT to generate the FORMAT.

 Also, on line , we need to rename the key variable SEQNUM to START.

 Since FMTNAME, TYPE and LABEL will not change for each record we can use the RETAIN statement starting on
line (RETAIN is more efficient than variable assignment statements).

 Note that we set FMTNAME to ‘key’. In this example, the format type is character since the key field on which to
match is character. We also assign a value of ‘C’ to TYPE to indicate that we are setting up a character format.
This code will work if we call FMTNAME ‘key’ or ‘$key’. Another interesting quirk of PROC FORMAT.

 Beginning with line we start a DO loop to handle specification of an ‘OTHER’ condition. The HLO variable
specified in line will handle the OTHER specification by setting HLO=’O’. It is a good idea to set the START
variable to missing to avoid a one-to-many mapping. At the end of the loop, we output another record where LABEL
is set to ‘N’.

 In, we specify the CNTLIN= option on the PROC FORMAT statement. This will read in the data FMT and generate
the FORMAT $KEY that we will then use in the merge-extract DATA step starting on line.

PICTURE FORMATS
PICTURE FORMATS provide a template for printing numbers. The template can specify how numbers are displayed and
provide a method to deal with:

 Leading zeros.

 Decimal and comma placement.

 Embedding characters within numbers.

 Prefixes.

 Truncation or rounding of numbers.

Many examples are included in (2005, Bilenas). One example of using PICTURE FORMATS is to add a trailing ‘%’ in
PROC TABULATE output when a PCTSUM or PCTN calculation is specified. For this example, we also use the ROUND
option so that the number is rounded rather than truncated. This code will print a leading 0 if the percentage is less than
1 (i.e., .67% displays as 0.67%) since we include a digit selector with a value other then 0 to the left of the decimal point.
With the two ‘9’ values after the decimal, 2 digits will be displayed after the decimal even if one or more are 0.

proc format;

 picture p8r (round) 0-100 = '0009.99%'

 ;

run;

The above example will remove negative signs for negative values when applying the format. This may not be an issue
in PROC TABULATE when using PCTSUM or PCTN statistics, but you may want to be safe and modify the code as
follows:

proc format;

 picture p8r (round)

 low - < 0 = '0009.99%' (prefix='-')

 0 - high = '0009.99%'

 ;

run;

CREATING MULTI-LABEL FORMATS
With the introduction of SAS8, we have a capability to map values to more than one label. Multi-label formats can be
used in PROC SUMMARY and PROC TABULATE. Let us take a look at an example that we introduced earlier where we
are mapping credit decision codes into labels:

 ‘a1’, ’a2’, ’a4’ = ‘Approve’

 ‘d1’, ‘d6’ = ‘Decline’

We wish to generate a frequency report for each decision and get totals for each category. Here is the code that
generates the formats, the hypothetical data, and the summary report.

7

proc format;

value key low - 0.20 = 'a1'

 0.20 < - 0.25 = 'a2'

 0.25 < - 0.35 = 'a4'

 0.35 < - 0.80 = 'd1'

 0.80 < - high = 'd6'

 ;

 picture p8r (round)

 low - < 0 = '0009.99%' (prefix='-')

 0 - high = '0009.99%'

 ;

 value $deccode (multilabel notsorted)

 'a0' - 'a9' = 'APPROVE TOTALS'

 'a1' = ' a1: Approval'

 'a2' = ' a2: Weak Approval'

 'a4' = ' a4: Approved Alternate Product'

 'd0' - 'd9' = 'DECLINE TOTALS'

 'd1' = ' d1: Decline for Credit'

 'd6' = ' d6: Decline Other'

 ;

run;

data decision;

 do id = 1 to 1000;

 decision = put(ranuni(7),key.);

 output;

 end;

run;

proc tabulate data=decision noseps formchar=' ';

 class decision/mlf preloadfmt order=data;

 format decision $deccode.;

 table (decision all)

 ,n*f=comma5.

 pctn='%'*f=p8r.

 /rts=33 row=float misstext=' ';

run;

In the PROC FORMAT section of the code we create 3 formats. In line we generate the format that will assign
decision code to records in a SAS data set based on a uniform random number generated in a DO loop ().

The second format in line generates the PICTURE format for displaying percent signs in PROC TABULATE.

The final format in line is used to generate the multi-label format. Some comments on this format:

1. Note that we must specify the (multilabel) option when generating the format.

2. We can preserve the order of formatted values on tabulate output by specifying the NOTSORTED option in the
generation of the FORMAT and PRELOADFMT ORDER=DATA options in line; the CLASS specification in
TABULATE.

3. Note that we have labels for each of the 5 decision codes. We also map all codes beginning with the letter ‘a’
into ‘APPROVE TOTALS’ and all those beginning with the letter ‘d’ into ‘DECLINE TOTALS’

4. The CLASS statement in TABULATE or SUMMARY () must include the MLF option to generate the multi-label
output.

Output from TABULATE code is shown in Output 4.

 N %

 decision

 APPROVE TOTALS 314 31.40%

 a1: Approval 163 16.30%

 a2: Weak Approval 45 4.50%

 a4: Approved Alternate Product 106 10.60%

 DECLINE TOTALS 686 68.60%

 d1: Decline for Credit 453 45.30%

 d6: Decline Other 233 23.30%

 All 1,000 100.00%

Output 4. Illustrating Multi-Label FORMATS

8

SAVING FORMATS
Sometimes you may want to save your formats to use in other code or to be used by other users. Use the LIBRARY=
option:

libname libref ..

proc format library = libref;

 value ..

 ;

 run;

To use the saved format in a subsequent program without having to enter the FORMAT code, specify a LIBNAME of
LIBRARY so that SAS will look for user formats in the LIBRARY.

libname library ..

You can edit the format by first converting it into a SAS data set using a CNTLOUT option in PROC FORMAT and then
edit the data set with PROC FSEDIT. When the changes are made, convert back to a user FORMAT with the CTLIN=
option. Here is an example of using the CNTLOUT option:

proc format library=libref cntlout=SAS dataset;

 select entry;

To print out a saved FORMAT library, use the FMTLIB option as indicated:

libname library …

proc format library=library fmtlib;

run;

CONCLUSION
The FORMAT procedure allows users to create their own formats that allow for a convenient table look up in SAS. Using
PROC FORMAT will make your code more efficient and your output look more professional.

REFERENCES:
 Bilenas, J. “The Power of PROC FORMAT”, SAS Press, 2005.

 Watts, P. Using Database Principles to Optimize SAS® Format Construction from Tabular Data, SUGI31, 2006

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jonas V. Bilenas

Barclays UK&E RBB

Wilmington, DE 19801

Email: Jonas.Bilenas@barclays.com

 jonas@jonasbilenas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

This work is an independent effort and does not necessarily represent the practices followed at current or
previous employers.

mailto:Jonas.Bilenas@barclays.com
mailto:jonas@jonasbilenas.com

