Reducing Credit Union Member Attrition with Predictive Analytics

Nate Derby

Stakana Analytics Seattle, WA

PhilaSUG 10/29/15

Outline

- Introduction
- Introduction
- Data Preparation
 - Introduction
 - Duplicating the Data
 - Building Our Variables
 - Partitioning the Data
- Building/Assessing the Models
 - Building the Models
 - Assessing the Models
- 4
- Results
 - Predictive Model
 - Forecasts
 - Caveats
 - Conclusions

Introduction

Introduction: The Problem with Member Attrition

Fisher CU of Ames, IA:

- 6/30/15: 70,359 members, \$928MM.
- 3/31/15: 69,534 members, \$920MM.
- Grew their membership by 1.19%. That's great, right?
- Wrong! Those 825 new members are a *net* gain.
- We actually gained 3541 *new* members but lost 2716 *existing* members.

Why is this important?

Introduction

Introduction: The Problem with Member Attrition

Member attrition dramatically affects net membership growth:

- Retained 20% of departing members:
 - \Rightarrow Gained a net 1368 members, 1.97% net membership growth.
- Retained 25% of departing members:
 - ⇒ Gained a net 1504 members, 2.16% net membership growth.
- Retained 50% of departing members:
 - \Rightarrow Gained a net 2183 members, 3.14% net membership growth.

Member attrition has a huge effect!

Introduction

Introduction: The Problem with Member Attrition

Retaining existing members usually easier and less expensive than gaining new members:

- Members already know and trust you, and you already know so much about them.
- Keeping them might be as simple as making a phone call.
- Key is making full use of our member data.

Focus on members with highest value, highest risk of leaving.

Introduction

Data Preparation Building/Assessing the Models Results

Introduction

Member Segmentation

Introduction Duplicating the Data Building Our Variables Partitioning the Data

Many Details to Coordinate!

We're building a statistical model:

• Equation that gives the probability that a member will leave.

Data preparation in three steps:

- Duplicating the data.
- Building our variables.
- Partitioning the data.

Introduction Duplicating the Data Building Our Variables Partitioning the Data

What Does This Mean?

We're building a statistical model:

Probability of leaving in 2-3 months = $f(X_1, X_2, X_3, ...)$

- *f* is a function we don't know yet (which we'll build).
- Once we know *f*, we'll use *X*₁, *X*₂, *X*₃, ... to get our probability.

In other words ...

- To *build* the model, we need data as of 3 months ago, coupled with who left 2-3 months later (which we know).
- To *use* the model, we need data as of now, to tell us who are likely to leave 2-3 months later (which we don't know).

The time intervals for X_1 , X_2 , X_3 , ... must be the same for both.

Introduction Duplicating the Data Building Our Variables Partitioning the Data

How Do We Do This?

Introduction Duplicating the Data Building Our Variables Partitioning the Data

How Do We Do This in SAS?

SAS Code

%prepareData(modeling)
%prepareData(scoring)

Introduction Duplicating the Data Building Our Variables Partitioning the Data

How Do We Do This in SAS?

%prepareData Macro

```
%MACRO prepareData( dataSet );
```

%LOCAL now1 now2 now ... attritionEndDate;

```
PROC SQL NOPRINT;
SELECT MAX( effectiveDate )
INTO :now1
FROM member_accounts;
SELECT MIN( tranPostData ), MAX( tranPostDate )
INTO :startDate, :now2
FROM member_transactions;
QUIT;
```

%LET now = %SYSFUNC(MIN(&now1, &now2));

Introduction Duplicating the Data Building Our Variables Partitioning the Data

How Do We Do This in SAS?

%prepareData Macro

```
%IF &dataSet = modeling %THEN %DO;
%LET predictorStartDate = &startDate;
%LET predictorEndDate = %EVAL( &now - 84 );
%LET attritionStartDate = %EVAL( &now = 56 + 1 );
%LET attritionEndDate = &now;
%END;
```

```
%ELSE %IF &dataSet = scoring %THEN %DO;
%LET predictorStartDate = %EVAL( &startDate + 84 );
%LET predictorEndDate = &now;
%END;
```

%MEND prepareData;

. . .

Introduction Duplicating the Data Building Our Variables Partitioning the Data

What Are We Doing?

For both of our data sets, we'll build variables that might be predictive of a member closing his/her account.

- We don't care if they're *actually* predictive, as our model will figure that out!
- But we need to "nominate" variables for the model to try out.

Some examples:

- Transaction recency.
- External deposit recency.
- Recent large transaction.
- Small/large number of transactions.
- Seasonality.

Introduction Duplicating the Data Building Our Variables Partitioning the Data

How Do We Do This in SAS?

%prepareData Macro

```
PROC SQL NOPRINT;
CREATE TABLE predictorData1 AS
SELECT
     id_member,
     MAX( ( &predictorEndDate - tranPostDate )/7 ) AS tranRecency,
     MEAN( ABS( tranAmt ) ) AS meanTranAmt,
     N( tranAmt ) AS nTrans,
     N( tranAmt ) /MAX( INTCK( 'month', tranPostDate, &now, 'c' ) ),
     FROM member_transactions
     WHERE
     tranPostDate BETWEEN &predictorStartDate AND &predictorEndDate
     AND UPCASE( tranTypeCode ) IN ( 'CCC', 'CCD', ... 'WTHD' )
     GROUP BY id_member;
```

Introduction Duplicating the Data Building Our Variables Partitioning the Data

How Do We Do This in SAS?

%prepareData Macro

```
CREATE TABLE predictorData2 AS
SELECT
    id_member,
    MAX( ( &now - tranPostDate )/7 ) AS depRecency,
    FROM member_transactions
    WHERE
      tranPostDate BETWEEN &predictorStartDate AND &predictorEndDate
      AND UPCASE( tranTypeCode ) = 'XDEP'
    GROUP BY id_member;
```

QUIT;

Percentiles via PROC UNIVARIATE, then merge ...

Introduction Duplicating the Data Building Our Variables Partitioning the Data

Training vs. Validation vs. Test Set

We won't build one statistical model for our forecasts.

- We'll build several statistical models.
- We'll choose the one that gives us the best results.
- We'll give an estimate of how accurate those results are.

Each of those steps needs a different data set!

- A statistical model finds the equation that best fits the data.
- If we use the same data, then of course we have great accuracy!
- But the whole point is to predict data we haven't seen yet.

If we never actually tested how well our model predicts unknown data, we could have a nasty surprise.

Introduction Duplicating the Data Building Our Variables Partitioning the Data

Training vs. Validation vs. Test Set

Much better way:

- We'll build several statistical models.
- We'll choose the one that gives us the best results.
- We'll give an estimate of how accurate those results are.

Each of those steps needs a different data set!

- *Training Set* (60%) = data for building the models.
- *Validation Set* (20%) = data for evaluating results of all models.
- Test Set (20%) = data for evaluating results of the final model.

Introduction Duplicating the Data Building Our Variables Partitioning the Data

Training vs. Validation vs. Test Set

Introduction Duplicating the Data Building Our Variables Partitioning the Data

How Do We Do This in SAS?

Training: 60%, Validation: 20%, Test: 40%

```
DATA trainingData validationData testData;
SET inputData;
CALL STREAMINIT( 29 );
randUni = RAND( 'uniform' );
IF randUni < .6 THEN OUTPUT trainingData;
ELSE IF randUni < .8 THEN OUTPUT validationData;
ELSE OUTPUT testData;
RUN;
```

From 69,534 members:

- 41,875 in training set (60.22%).
- 13,807 in validation set (19.86%).
- 13,852 in test set (19.92%).

Building the Models Assessing the Models

Building a Model

Building a Statistical Model (with different sets of variables)

PROC LOGISTIC DATA=trainingData OUTMODEL=trainingModell; CLASS ageTier(REF='18 and Under') / PARAM=ref; MODEL attrition(event='1') = depRecency ageTier lom nProducts calls; ODS OUTPUT parameterEstimates = parameter_model1; RUN;

Building the Models Assessing the Models

Assessing a Model

Apply the model to our validation set.

Building a Statistical Model (with different sets of variables)

PROC LOGISTIC INMODEL=trainingModel1;

SCORE DATA=validationData

OUT=validationForecasts OUTROC=validationROC;

RUN;

validationForecasts and validationROC will be used later.

Building the Models Assessing the Models

Assessing a Model

If this is our best model and we want to apply it to our test data set:

Building a Statistical Model (with different sets of variables)

PROC LOGISTIC INMODEL=trainingModel1; SCORE DATA=testData OUT=testForecasts OUTROC=testROC; RUN;

When we're done and want to make our final forecasts:

Building a Statistical Model (with different sets of variables)

PROC LOGISTIC INMODEL=trainingModel1; SCORE DATA=inputData OUT=finalForecasts; RUN; Introduction Predictive Model
Data Preparation Forecasts
Building/Assessing the Models Caveats
Results Conclusions

Predictive Model

Attrition Risk = $1/(1 + \exp(0.07 - 0.0043X_1 - 2.02X_2 - 3.30X_3)$ - $2.91X_4 - 3.21X_5 - 2.76X_6 - 3.37X_7 - 2.36X_8$ - $2.67X_9 - 2.75X_{10} - 4.47X_{11} - 4.17X_{12} + 0.094X_{13}$ + $4.94X_{14} - 2.99X_{15})$).

- X₁ = external deposit recency (weeks).
- $X_2 = 1$ if the member is of age 19-24, 0 otherwise.
- :
- $X_{12} = 1$ if the member is of age 71 or over, 0 otherwise.
- X_{13} = length of membership (months).
- X_{14} = number of products.
- X₁₅ = number of customer service calls in the past month.

Introduction Predictive Model
Data Preparation Forecasts
Building/Assessing the Models
Results Conclusions

Interpretation

- For every week that a member goes without an external deposit, his/her odds of attrition multiply by $e^{0.00425} = 1.004$.
- The odds of a member aged 19-24 leaving is $e^{2.0201} = 7.5$ times the odds of a member 18 or under leaving.
- :
- The odds of a member aged 71+ leaving is $e^{4.1651} = 64.4$ times the odds of a member 18 or under leaving.
- For every month that a member continues a membership, his/her odds of attrition multiply by $e^{-0.0938} = 0.91$.
- For every product that a member signs up for, his/her odds of attrition multiple by $e^{-4.9355} = 0.0072$.
- For every customer service call that a member makes, his/her odds of attrition multiply by e^{2.9855} = 19.8.

Predictive Model Forecasts Caveats Conclusions

Forecasts

X				Fisher CU Me	ember Attrition Forecasts as of 15-0	6-30.xlsx - Excel		? 🗈 -	- 🗆 ×
FIL	FILE HOME INSERT PAGELAYOUT FORMULAS DATA REVIEW VIEW Acrobat Nate Derby - 🔞							arby * 🔞	
⊟ ★ · ♂ · ÷									
A1	* 1	$\times \checkmark f_x$	Member ID						~
	А	в	с	D	E	F	G	н	*
1	Member ID 👻	Risk of Attrition in 2-3 months 💌	Aggregate Balance 💌	Age Tier ,T	Length of Membership (Months)	External Deposit Recency (Weeks) 💌	Number of Products J	Customer Service Calls (past month)	r –
2	38050	99.99%	\$24,219.38	36 - 40	44	178.01	1		8
3	37605	99.99%	\$2,868.88	36 - 40	6	14.11	1		7
4	21035	99.99%	\$21,795.65	61 - 65	14	28.66	1		,
5	27143	99.99%	\$9,474.69	41 - 45	21	87.23	1		7
6	8511	99.99%	\$202.41	19 - 24	16	53.89	1		,
7	1006	99.99%	\$6,473.96	56 - 60	24	20.07	1		,
8	32628	99.99%	\$13,850.80	66 - 70	22	27.34	1		5
9	29364	99.99%	\$8,423.36	25 - 30	24	96.49	2	1	3
10	70252	99.99%	\$610.98	19 - 24	32	8.39	1		,
11	69985	99.99%	\$11,398.00	25 - 30	56	197.92	1		,
12	51167	99.99%	\$14,239.38	41 - 45	17	59.12	1		5
13	68801	99.99%	\$105,157.41	25 - 30	22	41.49	1		•
14	29989	99.99%	\$17,112.47	46 - 50	35	140.29	1		·
15	5638	99.99%	\$17,542.99	36 - 40	64	105.08	1		<u> </u>
10	23305	99.99%	\$7,555.09	40 - 50	30	20.18	1		
1/	4/99/	99.99%	\$12,247.90	40 - 50	34	91.16	1		-
18	92//	99.99%	\$47,612.51	71+	8	32.31	1		2
20	52850	99.99%	\$11,555.09	51 - 55	31	120.05	1		
20	22334	99,99%	\$15,870.95	21 25	24	120.20			
21	23290	55.55%	<i>\$</i> 3,404.13	31-33	34	130.20	1		
-	Me	mber Attrition Fore	asts (+)						Þ
READ							## #	<u> </u>	

	Introduction Data Preparation Building/Assessing the Models Results	Predictive Model Forecasts Caveats Conclusions
Caveats		

This is only half of a retention strategy!

• Nothing will happen without an intervention strategy!

Introduction Predictive Model Data Preparation Forecasts Building/Assessing the Models Caveats Results Conclusions

Conclusions

- Predictive analytics can be a powerful tool for member retention
- These techniques just scratch the surface of how we can reduce member attrition with predictive analytics.
- This approach can also be used to predict other aspects of member behavior.
 - When a member will buy a car.
 - When a member will buy a home.
 - Whether a member is committing a financial crime.
- We can also use these techniques to further cultivate our members.

Appendix

Further Resources

Junxiang Lu.

Predicting Customer Churn in the Telecommunications Industry. *Proceedings of the Twenty-Seventh SUGI Conference*, 2002.

Ward Thomas.

Improving Retention by Predicting Both Who and Why. Proceedings of the Twenty-Third NESUG Conference, 2010.

Nate Derby: nderby@stakana.com

