
Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

1

Data Normalization for Dummies Using SAS®

Venu Perla, Ph.D.
Clinical Programmer, Emmes Corporation, Rockville, MD 20850

SAS Certified Base Programmer for SAS 9

SAS Certified Advanced Programmer for SAS 9
SAS Certified Clinical Trials Programmer Using SAS 9

SAS Certified Statistical Business Analyst Using SAS 9: Regression and Modeling

Abstract
Life scientists often struggle to normalize non-parametric data or ignore normalization prior to data analysis. Based
on statistical principles, logarithmic, square-root and arcsine transformations are commonly adopted to normalize
non-parametric data for parametric tests. Several other transformations are also available for normalizing data.
However, for many, identification of right transformation for non-parametric data is a tricky job. The objective of this
paper is to develop a SAS program that identifies right transformation and normalize non-parametric data for
regression analysis. To achieve this objective, PROC SQL, PROC TRANSREG, PROC REG, PROC UNIVARIATE,
PROC STDIZE, PROC CORR, PROC SGPLOT, PROC IMPORT and PROC PRINT of SAS are utilized in this paper.
Finally, SAS MACROS are developed on this code for reuse without hassles.

1. Introduction

Figure 1

Are you a dummy? Are you lazy? Do you really have no time? If your answer is ‘Yes’ to any of these questions, and if
you are performing regression analysis, read this paper and apply steps mentioned here to normalize your data using
SAS. If your answer is ‘No’ to all the questions, and if you are performing regression analysis, then you may have to
apply formal statistical knowledge to normalize your data (Figure 1). Formal statistics include several transformations

(logarithmic, square-root, arcsine etc) that are based on certain rules. However, SAS programming steps mentioned
in in this paper are not intended to replace formal statistical knowledge existing elsewhere. In other words, this paper
is intended for true or conditional dummies. Parametric tests, such as an ANOVA, t-test or linear regression, can be
applied to a dataset if it meets certain assumptions. One of the assumptions is that the data should be normally
distributed. Parametric tests on non-normal data produce false results. The objective of this paper is to show how ‘6-
step’ protocol transforms a dataset from non-parametric to parametric for regression analysis. It is important to note
that the variables used in the parametric analysis must be continuous in nature (quantitative, interval or ratio values).
Discrete variables (categorical, qualitative, nominal or ordinal values) are not right candidates for parametric analysis.

A raw data on two interrelated plant metabolites (X and Y) is tested and normalized in this paper. There are 51
observations in this replicated data. Data analysis is carried out by SAS

®
 9.4 software with windows operating

http://philasug.org/arc.htm#app

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

2

system. Data used in this paper is imported from a sheet (XY_Data) of Microsoft
®
 Office Excel 97-2003 file (data1.xls)

(see XY_Data in Appendix). PROC IMPORT is utilized to import ‘XY_Data’ and renamed it as ‘HEALTH’ (Table 1).

%let path= C:\Users\Perla\Desktop\;

title "Importing data from excel";

proc import file="&path.data1.xls"

 out=health replace

 dbms=xls;

 sheet=XY_Data;

 getnames=yes;

run;

title "Checking imported data";

proc print data=health;

run;

For importing XY_Data, macro EXCEL_IMPORT is developed on above code (see Appendix). This macro can be
utilized in future for analysis of similar data by running following code:

%excel_import (excel_file= , excel_sheet= , dataset=);

2. Data Normalization
After importing data into SAS, a ‘6-step’ protocol for normalization of data for regression analysis using SAS is
presented in Figure 2. Programming aspects of each step are also discussed in this section.

Step 1: Check Scatter Plot and Correlation Matrix
Relationship between X- and Y-variables can be visualized using PROC SGPLOT and PROC CORR.

ods graphics on;

title "Scatter plot of X and Y";

proc sgplot data= health;

 scatter x=x y=y;

run;

title "Correlation between X and Y";

proc corr data = health;

 var x y;

run;

ods graphics off;

Scatter plot of X and Y indicates that there is no clear relationship between these two variables (Figure 3). Results on
Pearson correlation coefficients indicate a weak correlation between X- and Y-variables (Table 2).

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

3

Figure 2

Figure 3

Table 2

Above code is utilized to develop a macro, ‘SCATTER_CORR’ (See Appendix). This macro can be utilized in future
for analysis of similar data by running following code:

%scatter_corr (dataset= , xvar= , yvar=);

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

4

Step 2: Perform Regression Analysis and Normality Tests
There is an indication of a weak correlation between X and Y (Pearson correlation coefficient: 0.35). Further analysis
is carried out on this raw data using PROC REG and PROC UNIVARIATE. LACKFIT option of MODEL statement in
PROC REG determines whether this linear model is a good fit for this replicated data or not? Residual analysis and
normality tests are carried out using PROC UNIVARIATE with NORMAL option. If data is normal after 2

nd
 step, no

further steps are required to execute to normalize the data.

ODS graphics on;

title "Regression analysis";

proc reg data = health plots(only)=diagnostics (unpack);

model y = x/lackfit;

output out =mdlres r=resid;

run;

ODS graphics off;

proc univariate data= mdlres normal;

 var resid;

run;

Analysis of variance indicates that LACK OF FIT for the linear model is significant (Table 3). This suggests that

further in-depth analysis has to be carried out on this raw data before rejecting the model.

Parameter estimates and adjusted R

2
 value for the raw data are provided in Table 4A and 4B, respectively. Adjusted

R
2
 value is negligible (0.11).

Distribution of residuals for Y is not normal for the raw data (Figure 4).

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

5

Figure 4

Furthermore, significant p values for four tests of normality are the true testimony of non-normal distribution of data
(Table 5).

Table 5

Above code is utilized to develop a macro ‘REG_NORMALITY’ (See Appendix). This macro can be utilized in future
for analysis of similar data by running following code:

%reg_normality (dataset=health, xvar=x, yvar=y);

Step 3: Transform Data into Non-zero and Non-negative Data
Box-Cox power transformation can be adopted to normalize this raw data. Data should be converted to non-zero and
non-negative values before testing for Box-Cox power transformation. Following code transforms X- and Y-variables
into non-zero and/or non- negative variables only when ‘0’ or negative values are encountered in the data.

PROC SQL is used to transform X- and Y-variable data into non-zero and non-negative data. Table HEALTH_COX is
created from dataset HEALTH in this procedure. Proc SQL reproduced original data as there are no zeros and no
negative values (Table 6).

title "Transforming X and Y values into non-zero and non-negative values";

proc sql;

 create table health_cox as

 select case

 when min(x) <=0 then (-(min(x))+x+1)

 else x

 end as X,

 case

 when min(y) <=0 then (-(min(y))+y+1)

 else y

 end as Y

 from health;

quit;

proc print data=health_cox;

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

6

run;

Table 6

Macro ‘TRANSFORM_ZERO_NEG’ is developed for above PROC SQL code (See Appendix). This macro can be
invoked in future by following statement:

%transform_zero_neg (dataset= ,xvar= ,yvar= ,pre_trans_dataset=);

Step 4: Perform Box-Cox Power Transformation
Box-Cox power transformation on non-zero and non-negative data is performed using PROC TRANSREG with ODS
GRAPHICS on.

title "Box-Cox power transformation: Identification of right exponent

(Lambda)";

ods graphics on;

proc transreg data= health_cox;

 model boxcox(y) = identity(x);

run;

ods graphics off;

Above code generated Box-Cox analysis for Y (Figure 5). Selected lambda (-0.75 at 95% CI) is the exponent to be

used to transform the data into normal shape.

Figure 5

In order to get convenient lambda value, above SAS code is executed without ODS GRAPHICS statement.

proc transreg data = health_cox;

 model boxcox(y)=identity(x);

run;

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

7

This code generated best lambda, lambda with 95% confidence interval, and convenient lambda (Table 7).

Convenient lambda is used for transforming Y-variable in this analysis.

Table 7

Macro ‘BOX_COX_LAMBDA’ is developed on above code (See Appendix). This macro can be utilized in future for
analysis of similar data by running following code:

%box_cox_lambda (pre_trans_dataset=, xvar= ,yvar=);

PROC SQL program is used to transform Y-variable. Code for common convenient lambda values (-2, -1, -0.5, 0, 0.5,
1 and 2); respective Y-transformations (1/Y

2
, 1/Y, 1/sqrt (Y), log (Y), sqrt (Y), Y and Y

2
); and respective transformed-Y

variable names (neg_2_y, neg_1_y, neg_half_y, zero_y, half_y, one_y, and two_y) are incorporated in the program.

title "Transformation of Y-values with convenient lambda";

proc sql;

 create table health_trans as

 select x, y,

 1/(y**2) as neg_2_y,

 1/(y**1) as neg_1_y,

 1/(sqrt(y)) as neg_half_y,

 log(y) as zero_y,

 sqrt(y) as half_y,

 y**1 as one_y,

 y**2 as two_y

 from health_cox;

quit;

proc print data=health_trans;

run;

PROC SQL generated ‘HEALTH_TRANS’ table (Table 8). ‘neg_1_y’ is the corresponding transformed Y-variable for

the convenient lambda -1. This ‘neg_1_y’ variable is used for further analysis.

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

8

Table 8

Macro ‘TRANSFORM_LAMBDA’ is defined on above PROC SQL code (See Appendix). This macro can be utilized
in future for analysis of similar data by running following code:

%transform_lambda (pre_trans_dataset= , xvar= , yvar= , trans_dataset=);

Step 5: Standardize X-variable
After transformation of Y-variable, in order to obtain meaningful Y-intercept, X-variable is standardized using PROC
STDIZE. Dataset ‘HEALTH2’ is generated from table ‘HEALTH_TRANS’ in this procedure. OPREFIX option is used
to prefix the original X-variable name with the word, ‘Unstdized_’. On the other hand, standardized X-values are
stored under X.

title "Standardized X-variable after Y-transformation";

proc stdize data=health_trans

 oprefix=Unstdized_

 method=mean

 out=health2;

 var x;

run;

proc print data=health2;

run;

Generated dataset ‘HEALTH2’ is shown below with standardized X-variable in the last column as X (Table 9).

Table 9

Macro ‘STDIZE_X’ is defined on above code (See Appendix). It can be invoked in future by calling following
statement:

%stdize_x (trans_dataset= , trans_stdize_dataset= , xvar=);

Step 6: Perform Regression Analysis and Normality Tests
Regression analysis and normality tests are again performed on the transformed and standardized dataset
‘HEALTH2’ by calling previously defined macro ‘REG_NORMALITY’. Variable X is the standardized X, and ‘neg_1_y’
is the transformed Y.

%reg_normality (dataset=health2, xvar=x, yvar=neg_1_y);

With transformed data, LACK OF FIT for linear model is turned out to be non-significant, which indicates that the
linear model is acceptable for X and Y (Table 10). Parameter estimates for intercept and X are significant (Table 11).
As compared to the raw data, adjusted R

2
value with transformed data is improved from 0.11 to 0.53 (Table 12).

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

9

Other results indicate that transformed data is normally distributed (Figure 6; Table 13). Non-significant p-value with
Kolmogorov-Smirnov normality test further confirms that data is normally distributed (Table 13).

Table 10

Table 11

Table 12

Table 13

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

10

3. Normalization Eliminates Misleading Results
Negligible positive correlation exists between X and Y in raw data (Adjusted R

2
: 0.11). After normalization, there is a

moderate positive correlation between X and Y (Adjusted R
2
: 0.53). In other words, normalization eliminates

misleading results.

Raw data (non-parametric): Y = 0.124 + 0.933X (Adjusted R
2
: 0.11)

Normalized data: Y = 1.240 – 0.514X (Adjusted R
2
: 0.53)

4. Limitations and Solutions
Outliers in a data may drastically affect normalization. Three out of four tests of normality are still significant in this
analysis (Table 13). It indicates that there is a room for further improvement of data with respect to normalization. In

general, non-parametric nature of data after step 6 indicates presence of outliers in the dataset. There is at least one
outlier and leverage observation that is influencing the normal distribution here (Figure 7). Techniques to isolate and

rescue outliers while normalizing the data were presented at the Ohio SAS Users Group Conference (Perla, 2015A),
and at the Philadelphia Area SAS Users Group Fall Meeting (Perla, 2015B) (Figure 8 and 9). Another potential
limitation for ‘6-step’ protocol is the field of study. Perhaps, ‘6-step’ protocol can be applied in any filed. However,
sometimes, it may be more meaningful to adopt a transformation that is commonly used in that field of study.

Figure 7

Figure 8

Figure 9

5. Conclusions
In summary, misleading results are produced if parametric tests, such as t-test, ANOVA or linear regression, are
applied on non-parametric data. A ‘6-step’ protocol discussed in this paper is a good option for normalizing data for

http://www.cinsug.org/sites/g/files/g1233521/f/201506/Venu Perla How PROC SQL and SAS%C2%AB Macro Programming Made My Statistical Analysis Easy A Case Study on Linear Regression.pdf
http://www.philasug.org/Presentations/201510FallPSU/2015-Oct-Venu Perla-Final.pdf

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

11

regression analysis. In the real world, outliers are the major limitation while normalizing the data. I have recently
explained a technique to isolate and rescue outliers while normalizing the data. Refer Perla (2005A and B) for more
details and macro definitions.

References

Carpenter, Art. 2004. Carpenter’s Complete Guide to the SAS
®
 Macro Language, Second Edition, SAS

®
 Institute Inc.,

Cary, NC, USA.
Gupta, Sunil. 2016. Sharpening Your Advanced SAS

®
 Skills. CRC Press, Boca Raton, FL, USA.

Lafler, Kirk Paul. 2013. PROC SQL: Beyond the Basics Using SAS
®
, Second Edition, SAS

®
 Institute Inc., Cary, NC,

USA.
Li, Arthur. 2013. Handbook of SAS

®
 DATA Step Programming. CRC Press, Boca Raton, FL, USA.

Perla, Venu. 2015A. How PROC SQL and SAS
®

Macro Programming Made My Statistical Analysis Easy? A Case
Study on Linear Regression. Ohio SAS

®
 Users Conference held on June 1, 2015 at the Kingsgate Marriott

Conference Center at the University of Cincinnati, Cincinnati, Ohio, USA. Available at
http://www.cinsug.org/sites/g/files/g1233521/f/201506/Venu%20Perla%20How%20PROC%20SQL%20and%20
SAS%C2%AB%20Macro%20Programming%20Made%20My%20Statistical%20Analysis%20Easy%20A%20Ca
se%20Study%20on%20Linear%20Regression.pdf

Perla, Venu. 2015B. A Technique to Rescue Non-parametric Outlier Data Using SAS
®
. Philadelphia Area SAS

®

Users Group Fall Meeting held on October 29, 2015 at the Penn State Great Valley School of Graduate
Professional Studies, Malvern, PA, USA. Available at
http://www.philasug.org/Presentations/201510FallPSU/2015-Oct-Venu%20Perla-Final.pdf

SAS
®
 9.4 Product Documentation, SAS Institute Inc., Cary, NC, USA. Available at
http://support.sas.com/documentation/94/index.html

SAS/STAT
®
 9.3 User's Guide, SAS Institute Inc., Cary, NC, USA. Available at

http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#intro_toc.htm
SAS

®
 9.2 Macro Language: Reference, SAS Institute Inc., Cary, NC, USA. Available at
http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#titlepage.htm

SAS
®
 9.3 SQL Procedure User’s Guide, SAS Institute Inc., Cary, NC, USA. Available at
http://support.sas.com/documentation/cdl/en/sqlproc/63043/HTML/default/viewer.htm#titlepage.htm

Acknowledgments

I would like to thank the organizers for giving me an opportunity to present this paper at the Philadelphia SAS
®
 Users

Group Winter Meeting on March 16, 2016 at the Tuttleman Center, Philadelphia University, Philadelphia, PA, USA.

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Author Biography

Venu Perla, Ph.D. is a SAS Certified Advanced Programmer, Clinical Programmer and
Statistical Business Analyst for SAS 9. Dr. Perla is also a biomedical researcher with
about 14 years of research and teaching experience in an academic environment. He
served the Purdue University, Oregon Health & Science University, Colorado State
University, West Virginia State University R&D Corporation, Kerala Agricultural University
(India) and Mangalayatan University (India) at different capacities. Dr. Perla has
published 15 scientific papers and 2 book chapters, obtained 1 international patent on
orthopaedic implant device, gave 9 talks and presented 18 posters at national and
international scientific conferences in his professional career. Dr. Perla was invited to
serve as an editorial board member for several national and international scientific
journals. He was trained in clinical trials and clinical data management. Currently, he is

actively employing SAS
®
 programming techniques in clinical data analysis.

Contact Information

Phone (Cell): (304) 545-5705
Email: venuperla@yahoo.com
 vperla@emmes.com
LinkedIn: https://www.linkedin.com/pub/venu-perla/2a/700/468

http://www.cinsug.org/sites/g/files/g1233521/f/201506/Venu%20Perla%20How%20PROC%20SQL%20and%20SAS%C2%AB%20Macro%20Programming%20Made%20My%20Statistical%20Analysis%20Easy%20A%20Case%20Study%20on%20Linear%20Regression.pdf
http://www.cinsug.org/sites/g/files/g1233521/f/201506/Venu%20Perla%20How%20PROC%20SQL%20and%20SAS%C2%AB%20Macro%20Programming%20Made%20My%20Statistical%20Analysis%20Easy%20A%20Case%20Study%20on%20Linear%20Regression.pdf
http://www.cinsug.org/sites/g/files/g1233521/f/201506/Venu%20Perla%20How%20PROC%20SQL%20and%20SAS%C2%AB%20Macro%20Programming%20Made%20My%20Statistical%20Analysis%20Easy%20A%20Case%20Study%20on%20Linear%20Regression.pdf
http://www.philasug.org/Presentations/201510FallPSU/2015-Oct-Venu%20Perla-Final.pdf
http://support.sas.com/documentation/94/index.html
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#intro_toc.htm
http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/sqlproc/63043/HTML/default/viewer.htm#titlepage.htm
mailto:venuperla@yahoo.com
mailto:vperla@emmes.com
https://www.linkedin.com/pub/venu-perla/2a/700/468

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

12

Appendix

XY_Data sheet of data1.xls (Microsoft Excel 97-2003 file).

X Y

0.4 0.4

0.6 0.5

2.2 15.3

0.4 0.7

0.1 0.5

0.7 0.6

2.5 1.1

0.4 0.5

0.5 0.6

1.3 0.9

0.4 0.4

1.8 1.6

0.5 1.8

0.5 0.5

0.7 0.7

0.3 0.7

1.4 0.9

0.8 0.6

1.3 1

0.6 0.6

1.2 1

2 2.1

0.7 0.6

1.3 1.1

1.1 1

2 1.3

0.6 0.7

2.1 1.7

1.8 1.4

1.2 0.8

1 0.7

2.1 1.5

1.4 1

0.7 0.8

0.5 0.5

0.9 0.7

1.2 0.5

1.1 0.7

2.5 2

1 0.7

0.9 0.8

3 2.7

4.2 1.5

0.9 1

1.9 1.6

1 0.8

1.2 0.7

0.8 0.7

1.4 0.8

1.4 1.4

1 1

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

13

Macro ‘EXCEL_IMPORT’:
Macro ‘EXCEL_IMPORT’ is defined below for importing Excel files. Where, ‘EXCEL_FILE=’ is name of the excel file
to be used; ‘EXCEL_SHEET=’ is name of the excel sheet to be imported; and ‘DATASET=’ is name of the output
dataset. File extension and DBMS statement in the code may be modified according to the Excel version used.

%macro excel_import (excel_file= , excel_sheet= , dataset=);

 title "Importing data from excel";

 proc import file="&path.&excel_file..xls"

 out=&dataset replace

 dbms=xls;

 sheet=&excel_sheet;

 getnames=yes;

 run;

 title "Dataset from imported excel data";

 proc print data=&dataset;

 run;

%mend excel_import;

This macro can be invoked by calling following code for this paper:

%excel_import (excel_file=data1, excel_sheet=XY_Data, dataset=health);

Macro ‘SCATTER_CORR’:
Macro ‘SCATTER_CORR’ is defined below . Where, ‘DATASET=’ is name of the dataset to be used for analysis; and
‘XVAR=’ and ‘YVAR=’ are the names of the X- and Y-variables, respectively.

%macro scatter_corr (dataset= , xvar= , yvar=);

 ods graphics on;

 title "Scatter plot of &xvar and &yvar";

 proc sgplot data= &dataset;

 scatter x=&xvar y=&yvar;

 run;

 title "Correlation between &xvar and &yvar";

 proc corr data = &dataset;

 var &xvar &yvar;

 run;

 ods graphics off;

%mend scatter_corr;

This macro can be invoked by following statement for this paper:

%scatter_corr (dataset=health, xvar=x, yvar=y);

Macro ‘REG_NORMALITY’:
Macro ‘REG_NORMALITY’ is defined below for regression analysis and normality tests. Where, ‘DATASET=’ is name
of the dataset to be used for analysis; and ‘XVAR=’ and ‘YVAR=’ are names of the X- and Y-variables, respectively.

%macro reg_normality (dataset= ,xvar= ,yvar=);

 ODS graphics on;

 title "Regression analysis: Dataset &dataset";

 proc reg data = &dataset plots(only)=diagnostics (unpack);

 model &yvar = &xvar/lackfit;

 output out =mdlres r=resid;

 run;

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

14

 proc univariate data= mdlres normal;

 var resid;

 run;

 ODS graphics off;

%mend reg_normality;

This macro can be invoked by following statement for this paper:

%reg_normality (dataset=health, xvar=x, yvar=y);

Macro ‘TRANSFORM_ZERO_NEG’:
Macro ‘TRANSFORM_ZERO_NEG’ is defined below. Where, ‘DATASET=’ is the name of the input dataset to be
used for transforming X- and Y-values; ‘XVAR=’ and ‘YVAR=’ are names of the X- and Y-variables to be transformed,
respectively; and ‘PRE_TRANS_DATASET=’ is name of the output dataset to be created with transformed X- and Y-
variables.

%macro transform_zero_neg (dataset= ,xvar= ,yvar= ,pre_trans_dataset=);

title "Transforming &xvar and &yvar values into non-zero and non-negative

values";

 proc sql;

 create table &pre_trans_dataset as

 select case

 when min(&xvar) <=0 then (-(min(&xvar))+&xvar+1)

 else &xvar

 end as &xvar,

 case

 when min(&yvar) <=0 then (-(min(&yvar))+&yvar+1)

 else &yvar

 end as &yvar

 from &dataset;

 quit;

 proc print data=&pre_trans_dataset;

 run;

%mend transform_zero_neg;

This macro can be invoked by following statement for this paper:

%transform_zero_neg

(dataset=health,xvar=x,yvar=y,pre_trans_dataset=health_cox);

Macro ‘BOX_COX_LAMBDA’:
Macro ‘BOX_COX_LAMBDA’ is defined below. Where, ‘PRE_TRANS_DATASET=’ is name of the input dataset with
non-zero and non-negative values; and ‘XVAR=’ and ‘YVAR=’ are names of the X- and Y-variables, respectively.

%macro box_cox_lambda (pre_trans_dataset= ,xvar= ,yvar=);

 title "Box-Cox power transformation: Identification of right exponent

(Lambda)";

 ods graphics on;

 proc transreg data= &pre_trans_dataset;

 model boxcox(&yvar) = identity(&xvar);

 run;

 ods graphics off;

 proc transreg data = &pre_trans_dataset;

 model boxcox(&yvar)=identity(&xvar);

 run;

%mend box_cox_lambda;

Venu Perla, Ph.D. Philadelphia Area SAS Users Group (PhilaSUG) Winter 2016 Meeting; March 16, 2016
 Philadelphia University, Philadelphia, PA, USA

15

This macro can be invoked by following statement for this paper:

%box_cox_lambda (pre_trans_dataset=health_cox, xvar=x ,yvar=y);

Macro ‘TRANSFORM_LAMBDA’:
Macro ‘TRANSFORM_LAMBDA’ is defined below. Where, ‘PRE_TRANS_DATASET=’ is name of the input dataset
with non-zero and non-negative X- and Y-values; ‘XVAR=’ and ‘YVAR=’ are names of the X- and Y-variables,
respectively; and ‘TRANS_DATASET=’ is name of the output dataset with transformed data.

%macro transform_lambda (pre_trans_dataset= ,xvar= ,yvar= ,trans_dataset=);

 title "Transformation of &yvar.-values with convenient lambda";

 proc sql;

 create table &trans_dataset as

 select &xvar, &yvar,

 1/(&yvar**2) as neg_2_&yvar,

 1/(&yvar**1) as neg_1_&yvar,

 1/(sqrt(&yvar)) as neg_half_&yvar,

 log(&yvar) as zero_&yvar,

 sqrt(&yvar) as half_&yvar,

 &yvar**1 as one_&yvar,

 &yvar**2 as two_&yvar

 from &pre_trans_dataset;

 quit;

 proc print data=&trans_dataset;

 run;

%mend transform_lambda;

This macro can be invoked by following statement for this paper:

%transform_lambda (pre_trans_dataset=health_cox, xvar=x, yvar=y,

trans_dataset=health_trans);

Macro ‘STDIZE_X’:
Macro ‘STDIZE_X’ is defined below. Where, ‘TRANS_DATASET=’ is name of the input dataset;
‘TRANS_STDIZE_DATASET=’ is name of the output dataset; and ‘XVAR=’ is name of the X-variable to be
standardized.

%macro stdize_x (trans_dataset= ,trans_stdize_dataset= ,xvar=);

 title "Standardized &xvar.-variable after Y-transformation";

 proc stdize data=&trans_dataset

 oprefix=Unstdized_

 method=mean

 out=&trans_stdize_dataset;

 var &xvar;

 run;

 proc print data=&trans_stdize_dataset;

 run;

%mend stdize_x;

This macro can be invoked by following statement for this paper:

%stdize_x (trans_dataset=health_trans, trans_stdize_dataset=health2, xvar=x);

