Machine Learning for SAS Programmers

The Agenda

- Introduction of Machine Learning
- Supervised and Unsupervised Machine Learning
- Deep Neural Network
- Machine Learning implementation
- Questions and Discussion

about

Why did people ask / expect me to know about Machine Learning?

- Programming
- Statistics / modeling
- Working with data all the times

What is ML?

An application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.


```
** Derivation of 1st Age group **;
if age < 65 then do;
   agegr1n=1; agegr1="<65";
end:
if 65<=age<=69 then do;
   agegr1n=2; agegr1="65 - 69";
end:
else if 70<=age<=74 then do;
   agegr1n=3; agegr1="70 - 74";
end:
else if 75<=age<=79 then do;
   agegr1n=4; agegr1="75 - 79";
end:
else if 80<=age<=84 then do;
   agegr1n=5; agegr="80 - 84";
end:
else if age ge 85 then do;
   agegr1n=6; agegr1=">=85";
end:
```


Explicit programing

Machine Learning

How does Machine learn?

Algorithm

Input Data

How does Machine Learning work?

Input data

Algorithm

• Hypothesis Function - $h\theta(x)$ = $\theta x + b$

Minimize Cost
 Function,
 J(θ) = hθ(x) - Y,
 using Gradient
 Descent

Machine Learning Algorithms

- Hypothesis function
 - Model for data
 - $H_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$ (e.g., Y = 2X + 30)
- Cost function
 - measures how well hypothesis function fits into data.
 - Difference between actual data point and hypothesized data point. (e.g., Y – H_θ(x))
- Gradient Descent
 - Engine that minimizes cost function

Cost function with Gradient Descent

Cost function with Gradient Descent

Cost function with Gradient Descent

- J(0) = 49/6 = 8.167
- J(1) = 14/6 = 2.333
- J(2) = 0/6 = 0
- J(3) = 14/6 = 2.333
- J(4) = 49/6 = 8.167

Optimum θ is 2 – minimize the cost function, best fitted model is h = 2X.

Machine finds best model using input data

Best model can provide best predicted value.

More data, the better model

Data Quality in Machine Learning

Typical Machine Learning Workflow

Problems to solve

Data
Acquisition/
Integration

Data Quality and Transformation

ML model training / building

ML algorithm selection

Input data preparation – train & test

Implement ML model

Problems prediction

Machine Learning Type

- Supervised we know the correct answers
- Unsupervised no answers
- Artificial Neural Network – like human neural network

Supervised Machine Learning

Input data labeled – has correct answers

- Specific purpose
- Types
 - Classification for distinct output values
 - Regression for continuous output values

Classification

- Categorical target
- Often binary
- Example : Yes/No, 0
 to 9,
 mild/moderate/severe
- Logistic Regression, SVM, Decision Tree, Forests

Support Vector Machine (SVM)

SVM is one of the most powerful classification model, especially for complex, but small/mid-sized datasets.


```
*** SVM;
proc symachine data=x_train C=1.0;
kernel linear;
input x1 x2 x3 x4 / level=interval;
target y;
run;
```

SVM in SAS Visual Data Mining and Machine Learning

SAS Machine Learning portal can provide an interactive modeling.

SVM in SAS Visual Data Mining and Machine Learning

Python codes for SVM

```
#import ML algorithm
from sklearn.svm import SVC
#prepare train and test datasets
x_train = ...
y_train = ....
x_test = ....
#select and train model
svm = SVC(kernel='linear', C=1.0, random_state=1)
svm.fit(x_train, y_train)
#predict output
predicted = svm.predict(x_test)
```

Decision Trees

- identify various ways of splitting a data set into branch-like segments.
- Example:

 predicting the
 conditions for
 death


```
PROC HPSPLIT data = ADAE maxleaves=100
maxbranch = 4 leafsize=1;
model Y(event='y') = x1 x2 x3 x4;
Run;
```

Decision Tree in SAS Visual Data Mining and Machine Learning

Python codes for Decision Tree

```
#import ML algorithm
from sklearn.tree import DecisionClassifier
#prepare train and test datasets
x_train = ...
y_train = ....
x_test = ....
#select and train model
d_tree = DecisionClassifier(max_depth=4)
d_tree.fit(x_train, y_train)
#predict output
predicted = d_tree.predict(x_test)
```

Regression

- Numeric target
- Continuous variables
- Example:

 predicting house
 price per sqft
- LinearRegression,PolynomialRegression

Python codes for ML Linear Regression

```
#import ML algorithm
from sklearn import linear_model
#prepare train and test datasets
x train = ...
y_train = ....
x_test = ....
#select and train model
linear = linear_model.LinearRegression()
linear.fit(x_train, y_train)
#predict output
```

predicted = linear.predict(x_test)

Unsupervised Machine Learning

- Input data not-labeled no correct answers
- Exploratory
- Clustering the assignment of set of observations into subsets (clusters)

Artificial Neural Network (ANN)

- Most powerful ML algorithm
- Game Changer
- Works very much like human brain Neural network

Human Neuron

Neural Network – 100 billions

Artificial Neural Network (ANN) Introduction

ANN Architecture

- Input layer
 - 3 features (variables)
- Hidden layer
 - Hidden layer1
 - 4 neurons
 - Hidden layer2
 - 2 neurons

- Other parameters weight, activation function, learning rate
- Output layer 2 outputs

Neural Network in SAS using proc nnet

```
Proc nnet data=Train;
   architecture mlp;
    hidden 4:
    hidden 2;
   input x1 x2 x3 x4;
   target Y;
Run;
```

Neural Network in SAS Visual Data Mining and Machine Learning

Python codes for DNN

```
#import ANN - TensorFlow
Import tensorflow as tf
X = tf.placeholder(..)
Y = tf.placeholder(..)
hidden1 = tf.layer.dense(X, 4, activation=tf.nn.relu)
hidden2 = tf.layer.dense(hidden1, 2, activation=tf.nn.relu)
logits = neuron_layer(hidden2, 2)
loss = tf.reduce_mean(....)
optimizer = tf.train.GradientDescentOptimezer(0.1)
traing_op = optimizer.minimizer(loss)
tf.Session.run(training_op, feed_dict={X:x_train, Y:y_train})
```

Tensor Flow Demo

http://playground.tensorflow.org

Difference between Statistics and Machine Learning

Where is SAS in ML?

SAS Visual Data Mining and Machine Learning

- Linear Regression
- Logistic Regression
- Forest
- Support Vector Machine
- Neural Networks (limited layers)

Recommendation

- Amazon
- Netflix
- Spotify

Customer Service

Online Chatting

Call

AlphaGO

- ALPHAGO01:27:15
- LEE SEDOL 00:45:18

Why is AI(ML) so popular now?

- Cost effective
 - Automate a lot of works
 - Can replace or enhance human labors
 - "Pretty much anything that a normal person can do in <1 sec, we can now automate with Al" Andrew Ng
- Accurate
 - Better than humans
- Can solve a lot of complex business problems

Now, how Pharma goes into Al/ML market

- GSK sign \$43 million contract with Exscientia to speed drug discovery
 - aiming ¼ time and ¼ cost
 - identifying a target for disease intervention to a molecule from 5.5 to 1 year

J&J

Surgical Robotics – partners with Google.
Leverage AI/ML to help surgeons by
interpreting what they see or predict during
surgery

Now, how Pharma goes into Al/ML market

Roche

 With GNS Healthcare, use ML to find novel targets for cancer therapy using cancer patient data

Pfizer

- With IBM, utilize Watson for drug discovery
- Watson has accumulated data from 25 million articles compared to 200 articles a human researcher can read in a year.

Now, how Pharma goes into Al/ML market

Novartis

- With IBM Watson, developing a cognitive solution using real-time data to gain better insights on the expected outcomes.
- With Cota Healthcare, aiming to accelerate clinical development of new therapies for breast cancer.

ML application in Pharma R&D

- Drug discovery
- Drug candidate selection
- Clinical system optimization
- Medical image recognition
- Medical diagnosis
- Optimum site selection / recruitment
- Data anomality detection
- Personalized medicine

Adoption of AI/ML in Pharma

- Slow
- Regulatory restriction
- Machine Learning Black Box challenge – need to build ML models, statistically or mathematically proven and validated, to explain final results.
- Big investment in Healthcare and a lot of AI Start up aiming Pharma.

Healthcare AI/ML market

- US 320 million in 2016
- Europe 270 million in 2016
- 40% annual rate
- 10 billion in 2024
- Short in talents

Contact Us!

Contact Clindata Insight to learn more about Big Data and Machine Learning.

Email us at klee@clindatainsight.com consulting@clindatainsight.com http://www.clindatainsight.com/

Like us on Facebook @ Facebook.com/clindatainsight

Twitter @clindatainsight

WeChat @clindatainsight

THANKS

Kevin Lee klee@clindatainsight.com